Interpreter and Transpiler for simple
expressions on Nvidia GPUs using Julia

Daniel Wiplinger

ele g,
2o

A

MASTERARBEIT

eingereicht am

Fachhochschul-Masterstudiengang
Software Engineering

in Hagenberg

im Januar 2025

Advisor:

DI Dr. Gabriel Kronberger

© Copyright 2025 Daniel Wiplinger

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see |https://
lcreativecommons.org/licenses/by-nc-nd/4.0/|

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated as
such and properly acknowledged. I further declare that this or similar work has not been
submitted for credit elsewhere. This printed copy is identical to the submitted electronic
version.

Hagenberg, January 1, 2025

Daniel Wiplinger

Contents

Declaration

Abstract

Kurzfassung

1 Introduction
1.1 Background and Motivation
1.2 Research Question
1.3 Methodology

2 Fundamentals and Related Work
2.1 Equation learning
22 GPGPU

221 PTX.........

2.3 GPU Interpretation
2.4 Transpiler

Concept and Design

3.1 Requirements

3.2 Interpreter.
3.2.1 Architecture
3.22 Host
3.2.3 Device

3.3 Transpiler
3.3.1 Architecture
3.3.2 Host
3.3.3 Device

Implementation

4.1 Technologies.

4.2 Interpreter.

4.3 Transpiler

Evaluation

5.1 Test environment

<
BE BEEdY HdHdHdRERERNEREAERN dddER NNEHEB ! E <]

Contents

5.2 Results.
5.2.1 Interpreter
5.2.2 Transpilero L
5.2.3 Comparison

6 Conclusion
6.1 Future Work s

References
Literature

Abstract

This should be a 1-page (maximum) summary of your work in English.

vii

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit, Umfang max. 1 Seite. ...

viii

Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Lastly the methodology on how to answer these questions will be explained.

1.1 Background and Motivation

Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning is another field that can heavily benefit from
optimisation. One part of equation learning, is to evaluate the expressions generated by
the algorithm which can make up a significant portion of the runtime of the algorithm.
This thesis is concerned with optimising the evaluation part to increase the overall
performance of the equation learning algorithm.

Considering the following expression z; + 5 — abs(p;) * sqrt(zy)/10 + 2°3 which
contains simple mathematical operations as well as variables z,, and parameters p,,. This
expression is one example that can be generated by the equation learning algorithm and
needs to be evaluated for the next iteration. Usually multiple expressions are generated
per iteration, which also need to be evaluated. Additionally, multiple different values
need to be inserted for all variables and parameters, drastically increasing the amount
of evaluations that need to be performed.

The free lunch theorem as described by Adam et al. states that to gain ad-
ditional performance, a developer cannot just hope for future hardware to be faster,
especially on a single core. Therefore, algorithms need to utilise the other cores on a
processor to further acceleration. While this approach means more development over-
head, a much greater speed-up can be achieved. However, in some cases the speed-up
achieved by this is still not large enough and another approach is needed. One of these
approaches is the utilisation of a Graphics Processing Unit (GPU) as an easy and af-
fordable option as compared to compute clusters. Michalakes and Vachharajani
have shown a noticeable speed-up when using the GPU for weather simulation. In ad-

1. Introduction 2

dition to computer simulations GPU acceleration also can be found in other places like
networking (S. Han et al., [2010) or structural analysis of buildings (Georgescu et al.,

2013).

1.2 Research Question

With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations using GPUs. Therefore,
the following research questions are formulated:

e How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on graphics cards?

e Under what circumstances is the evaluation of simple arithmetic expressions faster
on a graphics card than on a CPU?

e Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
actually feasible. If it is feasible, it is important to evaluate if evaluating the expressions
on the GPU actually improves the performance over a parallelised CPU evaluator.
To answer if the GPU evaluator is faster than the CPU evaluator, the last research
question is important. As there are two major ways of implementing an evaluator on
the GPU, they need to be implemented and evaluated to finally state if evaluating
expressions on the GPU is faster and if so, which type of implementation results in the
best performance.

1.3 Methodology

In order to answer the research questions, this thesis is divided into the following chap-
ters:

Chapter 2: Fundamentals and Related Work
In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
The details of the implementation with the used technologies are covered, such

as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

1. Introduction 3

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. Furthermore, the results of the comparison of the GPU
and CPU evaluators are presented to show which of these yields the best perfor-
mance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.

Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning to establish
common knowledge of the topic and problem this thesis is trying to solve. The main
part of this chapter is split into two parts. The first part is exploring research that has
been done in the field of general purpose computations on the GPU (GPGPU) as well
as the fundamentals of it. Focus lies on exploring how graphics processing units (GPUs)
are used to achieve substantial speed-ups and when they can be effectively employed.
The second part describes the basics of how interpreters and compilers are built and
how they can be adapted to the workflow of programming GPUs.

2.1 Equation learning

Equation learning is a field of research that aims at understanding and discovering
equations from a set of data from various fields like mathematics and physics. Data is
usually much more abundant while models often are elusive. Because of this, generating
equations with a computer can more easily lead to discovering equations that describe
the observed data. Brunton et al. describe an algorithm that leverages equation
learning to discover equations for physical systems. A more literal interpretation of
equation learning is demonstrated by Pfahler and Morik . They use machine
learning to learn the form of equations. Their aim was to simplify the discovery of
relevant publications by the equations they use and not by technical terms, as they may
differ by the field of research. However, this kind of equation learning is not relevant for
this thesis.

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Keijzer (2004])
and Korns presented ways of improving the quality of symbolic regression algo-
rithms, making symbolic regression more feasible for problem-solving. Additionally, Jin
et al. proposed an alternative to genetic programming (GP) for the use in sym-
bolic regression. Their approach increased the quality of the results noticeably compared
to GP alternatives. The first two approaches are more concerned with the quality of
the output, while the third is also concerned with interpretability and reducing memory
consumption. Bartlett et al. also describe an approach to generate simpler and
higher quality equations while being faster than GP algorithms. Heuristics like GP or

2. Fundamentals and Related Work 5

neural networks as used by Werner et al. in their equation learner can help with
finding good solutions faster, accelerating scientific progress. As seen by these publi-
cations, increasing the quality of generated equations but also increasing the speed of
finding these equations is a central part in symbolic regression and equation learning
in general. This means research in improving the computational performance of these
algorithms is desired.

The expressions generated by an equation learning algorithm can look like this x; +
5—abs(p;)*sqrt(z,)/104+2"3. They consist of several unary and binary operators but also
of constants, variables and parameters and expressions mostly differ in length and the
kind of terms in the expressions. Per iteration many of these expressions are generated
and in addition, matrices of values for the variables and parameters are also created. One
row of the variable matrix corresponds to one instantiation of all expressions and this
matrix contains multiple rows. This leads to a drastic increase of instantiated expressions
that need to be evaluated. Parameters are a bit simpler, as they can be treated as
constants for one iteration but can have a different value on another iteration. This
means that parameters do not increase the number of expressions that need to be
evaluated. However, the increase in evaluations introduced by the variables is still drastic
and therefore increases the algorithm runtime significantly.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many dif-
ferent applications. Originally they were designed to improve performance and visual
quality in games. Dokken et al. first described the usage of GPUs for general
purpose programming. They have shown how the graphics pipeline can be used for
GPGPU programming. Because this approach also requires the programmer to under-
stand the graphics terminology, this was not a great solution. Therefore, Nvidia released
CUD in 2007 with the goal of allowing developers to program GPUs independent of
the graphics pipeline and terminology. A study of the programmability of GPUs with
CUDA and the resulting performance has been conducted by Huang et al. . They
found that GPGPU programming has potential, even for non-embarassingly parallel
problems. Research is also done in making the low level CUDA development simpler.
T. D. Han and Abdelrahman have described a directive-based language to make
development simpler and less error-prone, while retaining the performance of hand-
written code. To drastically simplify CUDA development Besard, Foket, et al.
showed that it is possible to develop with CUDA in the high level programming lan-
guage JuliaE—I while performing similar to CUDA written in C. In a subsequent study
Lin and McIntosh-Smith found that high performance computing (HPC) on the
CPU and GPU in Julia performs similar to HPC development in C. This means that
Julia can be a viable alternative to Fortran, C and C++ in the HPC field and has the
additional benefit of developer comfort since it is a high level language with modern
features such as garbage-collectors. Besard, Churavy, et al. have also shown how
the combination of Julia and CUDA help in rapidly developing HPC software. While

1]

https: developer.nvidia.com/cuda—toolkit|
https://julialang.org/|

https://developer.nvidia.com/cuda-toolkit
https://julialang.org/

2. Fundamentals and Related Work 6

this section and thesis in general talk about CUDA, as it is a widely used framework
for GPGPU programming, there also exist alternatives by AMD called ROCrrH and a
vendor independent alternative called OpenC

talk about the fields GPGPU really helped make performance improvements (weather
simulations etc). Then describe how it differs from classical programming. talk about
architecture (SIMD/SIMT; a lot of “slow” cores).

2.2.1 Parallel Thread Execution

Describe what PTX is to get a common ground for the implementation chapter. Prob-
ably a short section

2.3 GPU Interpretation

Different sources on how to do interpretation on the gpu (and maybe interpretation in
general too?)

2.4 Transpiler

talk about what transpilers are and how to implement them. If possible also gpu specific
transpilation. Also talk about compilation and register management. and probably find
a better title

Thttps://www.amd.com/de/products/software /rocm.html
‘|https://www khronos.org/opencl/|

https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/

Chapter 3

Concept and Design

introduction to what needs to be done. also clarify terms “Host” and “Device” here

3.1 Requirements and Data

short section. Multiple expressions; vars for all expressions; params unique to expression;
operators that need to be supported

3.2 Interpreter

as introduction to this section talk about what “interpreter” means in this context. so
“gpu parses expr and calculates”

3.2.1 Architecture

talk about the coarse grained architecture on how the interpreter will work. (.5 to 1
page probably)

3.2.2 Host

talk about the steps taken to prepare for GPU interpretation

3.2.3 Device

talk about how the actual interpreter will be implemented

3.3 Transpiler

as introduction to this section talk about what “transpiler” means in this context. so
“cpu takes expressions and generates ptx for gpu execution”

3. Concept and Design 8

3.3.1 Architecture

talk about the coarse grained architecture on how the transpiler will work. (.5 to 1 page
probably)

3.3.2 Host

talk about how the transpiler is implemented

3.3.3 Device

talk about what the GPU does. short section since the gpu does not do much

Chapter 4

Implementation

4.1 Technologies

Short section; CUDA, PTX, Julia, CUDA.jl
Probably reference the performance evaluation papers for Julia and CUDA.jl

4.2 Interpreter

Talk about how the interpreter has been developed.

4.3 Transpiler

Talk about how the transpiler has been developed

Chapter 5

Evaluation

5.1 Test environment

Explain the hardware used, as well as the actual data (how many expressions, variables
etc.)

5.2 Results

talk about what we will see now (results only for interpreter, then transpiler and then
compared with each other and a CPU interpreter)

5.2.1 Interpreter

Results only for Interpreter

5.2.2 Transpiler

Results only for Transpiler

5.2.3 Comparison

Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter

10

Chapter 6

Conclusion and Future Work

Summarise the results

6.1 Future Work

talk about what can be improved

11

References

Literature

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No
free lunch theorem: A review. In I. C. Demetriou & P. M. Pardalos (Eds.), Ap-
prozimation and optimization : Algorithms, complexity and applications (pp. 57—
82). Springer International Publishing. [https://doi.org/10.1007/978-3-030-127|
67-1 5| (Cit. on p.

Bartlett, D. J., Desmond, H., & Ferreira, P. G. (2024). Exhaustive symbolic regression
[Conference Name: IEEE Transactions on Evolutionary Computation|. IEEE
Transactions on Evolutionary Computation, 28(4), 950-964. [https://doi.org/1]
0.1109/TEV C.2023.3280250) (cit. on p.

Besard, T., Churavy, V., Edelman, A., & Sutter, B. D. (2019). Rapid software pro-
totyping for heterogeneous and distributed platforms. Advances in Engineering
Software, 132, 29-46. [https://doi.org/10.1016/j.advengsoft.2019.02.002] (cit. on
P

Besard, T., Foket, C., & De Sutter, B. (2019). Effective extensible programming: Un-
leashing julia on GPUs. IEEE Transactions on Parallel and Distributed Systems,
30(4), 827-841. |https://doi.org/10.1109/TPDS.2018.2872064| (cit. on p.

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations
from data by sparse identification of nonlinear dynamical systems [Publisher:
Proceedings of the National Academy of Sciences|. Proceedings of the National
Academy of Sciences, 118(15), 3932-3937. |https://doi.org/10.1073 /pnas.15173|
84113 (cit. on p.

Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2005). The GPU as a high performance
computational resource. Proceedings of the 21st Spring Conference on Computer
Graphics, 21-26. [https://doi.org/10.1145/1090122.1090126| (cit. on p. 5]

Georgescu, S., Chow, P., & Okuda, H. (2013). GPU acceleration for FEM-based struc-
tural analysis. Archives of Computational Methods in Engineering, 20(2), 111-
121. [https://doi.org/10.1007 /s11831-013-9082-8§] (cit. on p.

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: A GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev., 40(4), 195-206.
|oi.0rg/10.1145/1851275.18512()7| (cit. on p.

Han, T. D., & Abdelrahman, T. S. (2011). hiCUDA: High-level GPGPU programming
[Conference Name: IEEE Transactions on Parallel and Distributed Systems].
IEEE Transactions on Parallel and Distributed Systems, 22(1), 78-90. Retrieved

12

https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1145/1090122.1090126
https://doi.org/10.1007/s11831-013-9082-8
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207

References 13

March 1, 2025, from [https://ieeexplore.ieee.org/abstract /document /5445082
(cit. on p.

Huang, Q., Huang, Z., Werstein, P., & Purvis, M. (2008). GPU as a general purpose
computing resource [ISSN: 2379-5352]. 2008 Ninth International Conference on
Parallel and Distributed Computing, Applications and Technologies, 151-158.
ttps://doi.org/10.1109/PDCAT.2008.3§] (cit. on p.

Jin, Y., Fu, W., Kang, J., Guo, J., & Guo, J. (2020, January 16). Bayesian symbolic
regression. [https://doi.org/10.48550 /arXiv.1910.08892| (Cit. on p.

Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming and FEvolvable
Machines, 5(3), 259-269. [https://doi.org/10.1023/B:GENP.0000030195.77571]
[£9] (cit. on p.

Korns, M. F. (2011). Accuracy in symbolic regression. In R. Riolo, E. Vladislavleva, &
J. H. Moore (Eds.), Genetic programming theory and practice IX (pp. 129-151).
Springer. [https://doi.org/10.1007/978-1-4614-1770-5_ 8| (Cit. on p.

Lin, W.-C., & McIntosh-Smith, S. (2021). Comparing julia to performance portable
parallel programming models for HPC. 2021 International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 94-105. |https://doi.org/10.1109/PMBS54543.2021.000)
(cit. on p.

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction [ISSN: 1530-2075]. 2008 IEEE International Symposium on Parallel
and Distributed Processing, 1-7. |attps://doi.org/10.1109/IPDPS.2008.4536351]
(cit. on p.

Pfahler, L., & Morik, K. (2020). Semantic search in millions of equations. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 135-143. https://doi.org/10.1145/3394486.3403056] (cit. on p.

Werner, M., Junginger, A., Hennig, P., & Martius, G. (2021, May 13). Informed equation
learning. [https://doi.org/10.48550/arXiv.2105.06331] (Cit. on p.

https://ieeexplore.ieee.org/abstract/document/5445082
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.48550/arXiv.1910.08892
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1007/978-1-4614-1770-5_8
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/IPDPS.2008.4536351
https://doi.org/10.1145/3394486.3403056
https://doi.org/10.48550/arXiv.2105.06331

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

14

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Research Question
	Methodology

	Fundamentals and Related Work
	Equation learning
	GPGPU
	PTX

	GPU Interpretation
	Transpiler

	Concept and Design
	Requirements
	Interpreter
	Architecture
	Host
	Device

	Transpiler
	Architecture
	Host
	Device

	Implementation
	Technologies
	Interpreter
	Transpiler

	Evaluation
	Test environment
	Results
	Interpreter
	Transpiler
	Comparison

	Conclusion
	Future Work

	References
	Literature

