
Interpreter and Transpiler for simple
expressions on Nvidia GPUs using Julia

Daniel Wiplinger

M A S T E R A R B E I T

eingereicht am

Fachhochschul-Masterstudiengang

Software Engineering

in Hagenberg

im Januar 2025

Advisor:

DI Dr. Gabriel Kronberger

ii

© Copyright 2025 Daniel Wiplinger

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

iii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated as
such and properly acknowledged. I further declare that this or similar work has not been
submitted for credit elsewhere. This printed copy is identical to the submitted electronic
version.

Hagenberg, January 1, 2025

Daniel Wiplinger

iv

Contents

Declaration iv

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Question . 2
1.3 Methodology . 2

2 Fundamentals and Related Work 4
2.1 Equation learning . 4
2.2 GPGPU . 5

2.2.1 Programming GPUs . 6
2.2.2 PTX . 9

2.3 Compilers . 9
2.3.1 Interpreters . 9
2.3.2 Transpilers . 9

3 Concept and Design 10
3.1 Requirements . 10
3.2 Interpreter . 10

3.2.1 Architecture . 10
3.2.2 Host . 10
3.2.3 Device . 10

3.3 Transpiler . 10
3.3.1 Architecture . 11
3.3.2 Host . 11
3.3.3 Device . 11

4 Implementation 12
4.1 Technologies . 12
4.2 Interpreter . 12
4.3 Transpiler . 12

v

Contents vi

5 Evaluation 13
5.1 Test environment . 13
5.2 Results . 13

5.2.1 Interpreter . 13
5.2.2 Transpiler . 13
5.2.3 Comparison . 13

6 Conclusion 14
6.1 Future Work . 14

References 15
Literature . 15
Online sources . 17

Abstract

This should be a 1-page (maximum) summary of your work in English.

vii

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit, Umfang max. 1 Seite. ...

viii

Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Lastly the methodology on how to answer these questions will be explained.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning is another field that can heavily benefit from
optimisation. One part of equation learning, is to evaluate the expressions generated by
the algorithm which can make up a significant portion of the runtime of the algorithm.
This thesis is concerned with optimising the evaluation part to increase the overall
performance of the equation learning algorithm.

Considering the following expression 𝑥1 + 5 − abs(𝑝1) * sqrt(𝑥2)/10 + 2^3 which
contains simple mathematical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛. This
expression is one example that can be generated by the equation learning algorithm and
needs to be evaluated for the next iteration. Usually multiple expressions are generated
per iteration, which also need to be evaluated. Additionally, multiple different values
need to be inserted for all variables and parameters, drastically increasing the amount
of evaluations that need to be performed.

The free lunch theorem as described by Adam et al. (2019) states that to gain ad-
ditional performance, a developer cannot just hope for future hardware to be faster,
especially on a single core. Therefore, algorithms need to utilise the other cores on a
processor to further acceleration. While this approach means more development over-
head, a much greater speed-up can be achieved. However, in some cases the speed-up
achieved by this is still not large enough and another approach is needed. One of these
approaches is the utilisation of a Graphics Processing Unit (GPU) as an easy and af-
fordable option as compared to compute clusters. Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using the GPU for weather simulation. In ad-

1

1. Introduction 2

dition to computer simulations GPU acceleration also can be found in other places like
networking (S. Han et al., 2010) or structural analysis of buildings (Georgescu et al.,
2013).

1.2 Research Question
With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations using GPUs. Therefore,
the following research questions are formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on graphics cards?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a graphics card than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
actually feasible. If it is feasible, it is important to evaluate if evaluating the expressions
on the GPU actually improves the performance over a parallelised CPU evaluator.
To answer if the GPU evaluator is faster than the CPU evaluator, the last research
question is important. As there are two major ways of implementing an evaluator on
the GPU, they need to be implemented and evaluated to finally state if evaluating
expressions on the GPU is faster and if so, which type of implementation results in the
best performance.

1.3 Methodology
In order to answer the research questions, this thesis is divided into the following chap-
ters:
Chapter 2: Fundamentals and Related Work

In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
The details of the implementation with the used technologies are covered, such
as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

1. Introduction 3

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. Furthermore, the results of the comparison of the GPU
and CPU evaluators are presented to show which of these yields the best perfor-
mance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.

Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning to establish
common knowledge of the topic and problem this thesis is trying to solve. The main
part of this chapter is split into two parts. The first part is exploring research that has
been done in the field of general purpose computations on the GPU (GPGPU) as well
as the fundamentals of it. Focus lies on exploring how graphics processing units (GPUs)
are used to achieve substantial speed-ups and when they can be effectively employed.
The second part describes the basics of how interpreters and compilers are built and
how they can be adapted to the workflow of programming GPUs.

2.1 Equation learning
Equation learning is a field of research that aims at understanding and discovering
equations from a set of data from various fields like mathematics and physics. Data is
usually much more abundant while models often are elusive. Because of this, generating
equations with a computer can more easily lead to discovering equations that describe
the observed data. Brunton et al. (2016) describe an algorithm that leverages equation
learning to discover equations for physical systems. A more literal interpretation of
equation learning is demonstrated by Pfahler and Morik (2020). They use machine
learning to learn the form of equations. Their aim was to simplify the discovery of
relevant publications by the equations they use and not by technical terms, as they may
differ by the field of research. However, this kind of equation learning is not relevant for
this thesis.

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Keijzer (2004)
and Korns (2011) presented ways of improving the quality of symbolic regression algo-
rithms, making symbolic regression more feasible for problem-solving. Additionally, Jin
et al. (2020) proposed an alternative to genetic programming (GP) for the use in sym-
bolic regression. Their approach increased the quality of the results noticeably compared
to GP alternatives. The first two approaches are more concerned with the quality of
the output, while the third is also concerned with interpretability and reducing memory
consumption. Bartlett et al. (2024) also describe an approach to generate simpler and
higher quality equations while being faster than GP algorithms. Heuristics like GP or

4

2. Fundamentals and Related Work 5

neural networks as used by Werner et al. (2021) in their equation learner can help with
finding good solutions faster, accelerating scientific progress. As seen by these publi-
cations, increasing the quality of generated equations but also increasing the speed of
finding these equations is a central part in symbolic regression and equation learning
in general. This means research in improving the computational performance of these
algorithms is desired.

The expressions generated by an equation learning algorithm can look like this 𝑥1 +
5−abs(𝑝1)*sqrt(𝑥2)/10+2^3. They consist of several unary and binary operators but also
of constants, variables and parameters and expressions mostly differ in length and the
kind of terms in the expressions. Per iteration many of these expressions are generated
and in addition, matrices of values for the variables and parameters are also created. One
row of the variable matrix corresponds to one instantiation of all expressions and this
matrix contains multiple rows. This leads to a drastic increase of instantiated expressions
that need to be evaluated. Parameters are a bit simpler, as they can be treated as
constants for one iteration but can have a different value on another iteration. This
means that parameters do not increase the number of expressions that need to be
evaluated. However, the increase in evaluations introduced by the variables is still drastic
and therefore increases the algorithm runtime significantly.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many different
applications. Originally they were designed to improve performance and visual quality
in games. Dokken et al. (2005) first described the usage of GPUs for general purpose
programming. They have shown how the graphics pipeline can be used for GPGPU
programming. Because this approach also requires the programmer to understand the
graphics terminology, this was not a great solution. Therefore, Nvidia released CUDA1

in 2007 with the goal of allowing developers to program GPUs independent of the
graphics pipeline and terminology. A study of the programmability of GPUs with CUDA
and the resulting performance has been conducted by Huang et al. (2008). They found
that GPGPU programming has potential, even for non-embarassingly parallel problems.
Research is also done in making the low level CUDA development simpler. T. D. Han and
Abdelrahman (2011) have described a directive-based language to make development
simpler and less error-prone, while retaining the performance of handwritten code. To
drastically simplify CUDA development Besard, Foket, et al. (2019) showed that it is
possible to develop with CUDA in the high level programming language Julia2 while
performing similar to CUDA written in C. In a subsequent study Lin and McIntosh-
Smith (2021) found that high performance computing (HPC) on the CPU and GPU
in Julia performs similar to HPC development in C. This means that Julia can be a
viable alternative to Fortran, C and C++ in the HPC field and has the additional
benefit of developer comfort since it is a high level language with modern features
such as garbage-collectors. Besard, Churavy, et al. (2019) have also shown how the
combination of Julia and CUDA help in rapidly developing HPC software. While this

1https://developer.nvidia.com/cuda-toolkit
2https://julialang.org/

https://developer.nvidia.com/cuda-toolkit
https://julialang.org/

2. Fundamentals and Related Work 6

thesis in general revolves around CUDA, there also exist alternatives by AMD called
ROCm3 and a vendor independent alternative called OpenCL4.

While in the early days of GPGPU programming a lot of research has been done
to assess if this approach is feasible, it now seems obvious to use GPUs to accelerate
algorithms. Weather simulations began using GPUs very early for their models. In
2008 Michalakes and Vachharajani (2008) proposed a method for simulating weather
with the WRF model on a GPU. With their approach, they reached a speed-up of
the most compute intensive task of 5 to 20, with very little GPU optimisation effort.
They also found that the GPU usages was very low, meaning there are resources and
potential for more detailed simulations. Generally, simulations are great candidates for
using GPUs, as they can benefit heavily from a high degree of parallelism and data
throughput. Köster et al. (2020) have developed a way of using adaptive time steps to
improve the performance of time step simulations, while retaining their precision and
constraint correctness. Black hole simulations are crucial for science and education for
a better understanding of our world. Verbraeck and Eisemann (2021) have shown that
simulating complex Kerr (rotating) black holes can be done on consumer hardware in
a few seconds. Schwarzschild black hole simulations can be performed in real-time with
GPUs as described by Hissbach et al. (2022) which is especially helpful for educational
scenarios. While both approaches do not have the same accuracy as detailed simulations
on supercomputers, they show how single GPUs can yield similar accuracy at a fraction
of the cost. Networking can also heavily benefit from GPU acceleration as shown by
S. Han et al. (2010), where they achieved a significant increase in throughput than with
a CPU only implementation. Finite element structural analysis is an essential tool for
many branches of engineering and can also heavily benefit from the usage of GPUs as
demonstrated by Georgescu et al. (2013). However, it also needs to be noted, that GPUs
are not always better performing than CPUs as illustrated by Lee et al. (2010), but they
still can lead to performance improvements nonetheless.

2.2.1 Programming GPUs
The development process on a GPU is vastly different from a CPU. A CPU has tens
or hundreds of complex cores with the AMD Epyc 99655 having a staggering 192 cores
and twice as many threads. A guide for a simple one core 8-bit CPU has been published
by Schuurman (2013). He describes the many different and complex parts of a CPU
core. Modern CPUs are even more complex, with dedicated fast integer, floating-point
arithmetic gates as well as logic gates, sophisticated branch prediction and much more.
This makes a CPU perfect for handling complex control flows on a single program
strand and on modern CPUs even multiple strands simultaneously. However, as seen in
section 2.2, this often isn’t enough. On the other hand, a GPU contains thousands or
even tens of thousands of cores. For example, the GeForce RTX 50906 contains a total
of 21760 CUDA cores. To achieve this enormous core count a single GPU core has to
be much simpler than one CPU core. As described by Nvidia (2024) a GPU designates

3https://www.amd.com/de/products/software/rocm.html
4https://www.khronos.org/opencl/
5https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
6https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/
https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

2. Fundamentals and Related Work 7

Figure 2.1: Overview of the architecture of a CPU (left) and a GPU (right). Note the
higher number of simpler cores on the GPU (Nvidia, 2024).

much more transistors towards floating-point computations. This results in less efficient
integer arithmetic and control flow handling. There is also less Cache available per core
and clock speeds are usually also much lower than those on a CPU. An overview of the
differences of a CPU and a GPU architecture can be seen in figure 2.1.

Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice
when considering improving the performance of an algorithm. Because of the high num-
ber of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD
architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states
that there is a single stream of instructions that is executed on a huge number of data
streams. Franchetti et al. (2005) and Tian et al. (2012) describe ways of using SIMD
instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7
respectively by using SIMD instructions instead of serial computations. Extending this
to GPUs which are specifically built for SIMD/data parallel calculations shows why
they are so powerful despite having less complex and slower cores than a CPU.

While the concepts of GPGPU programming are the same no matter the GPU used,
the naming on AMD GPUs and guides differs from the CUDA naming. As previously
stated, this thesis will use the terminology and concepts as described by Nvidia in their
CUDA programming guide.

The many cores on a GPU, also called threads, are grouped together in several cat-
egories. On the lowest level exists a streaming multiprocessor (SM) which is a hardware
unit responsible for scheduling and executing threads and also contains the registers
used by the threads. One SM is always executing a group of 32 threads simultaneously
and this group is called a warp. The number of threads that can be started is virtually
unlimited. However, threads need to be grouped in a block, with one block usually con-
taining a maximum of 1024 threads. Therefore, if more than 1024 threads are needed,
more blocks need to be created. All threads in one block have access to some shared

2. Fundamentals and Related Work 8

Figure 2.2: Thread T2 wants to execute instruction B while T1 and T3 want to execute
instruction A. Therefore T2 will be an inactive thread this cycle and active in the next,
with T1 and T3 being the opposite. This means that now 2 cycles are needed instead of
one to advance all threads, resulting in worse performance.

memory, which can be used for L1-caching or communication between threads. It is
important that the blocks can be scheduled independently from on another with no
dependencies between them. This allows the scheduler to schedule blocks and threads
as efficiently as possible. All threads within a warp are ensured to be part of the same
block and therefore executed simultaneously (Nvidia, 2024).

While all threads in a warp start at the same point in a program, they have their
own instruction address, allowing them to work independently. Because of the SIMD
architecture, all threads in a warp must execute the same instructions and if threads
start diverging, the SM must pause threads with different instructions and execute them
later. Figure 2.2 shows how such divergences can impact performance.

Threads not executing the same instruction is against the SIMD principle but can
happen in reality, due to data dependent branching. Consequently, this leads to bad re-
source utilisation, which in turn leads to worse performance. Another possibility of
threads being paused (inactive threads) is the fact that sometimes, the number of
threads started is not divisible by 32. In such cases, the last warp still contains 32
threads but only the threads with work are executed (Nvidia, 2024).

Modern GPUs implement the so called Single-Instruction Multiple-Thread (SIMT)
architecture.

2. Fundamentals and Related Work 9

2.2.2 Parallel Thread Execution
Describe what PTX is to get a common ground for the implementation chapter. Prob-
ably a short section

2.3 Compilers
Maybe even move this entire section to “Concept and Design”?

brief overview about compilers (just setting the stage for the subsections basically).
Talk about register management and these things.

2.3.1 Interpreters
What are interpreters; how they work; should mostly contain/reference gpu interpreters

2.3.2 Transpilers
talk about what transpilers are and how to implement them. If possible also gpu specific
transpilation.

Chapter 3

Concept and Design

introduction to what needs to be done. also clarify terms “Host” and “Device” here

3.1 Requirements and Data
short section. Multiple expressions; vars for all expressions; params unique to expression;
operators that need to be supported

3.2 Interpreter
as introduction to this section talk about what “interpreter” means in this context. so
“gpu parses expr and calculates”

3.2.1 Architecture
talk about the coarse grained architecture on how the interpreter will work. (.5 to 1
page probably)

3.2.2 Host
talk about the steps taken to prepare for GPU interpretation

3.2.3 Device
talk about how the actual interpreter will be implemented

3.3 Transpiler
as introduction to this section talk about what “transpiler” means in this context. so
“cpu takes expressions and generates ptx for gpu execution”

10

3. Concept and Design 11

3.3.1 Architecture
talk about the coarse grained architecture on how the transpiler will work. (.5 to 1 page
probably)

3.3.2 Host
talk about how the transpiler is implemented

3.3.3 Device
talk about what the GPU does. short section since the gpu does not do much

Chapter 4

Implementation

4.1 Technologies
Short section; CUDA, PTX, Julia, CUDA.jl

Probably reference the performance evaluation papers for Julia and CUDA.jl

4.2 Interpreter
Talk about how the interpreter has been developed.

4.3 Transpiler
Talk about how the transpiler has been developed

12

Chapter 5

Evaluation

5.1 Test environment

Explain the hardware used, as well as the actual data (how many expressions, variables
etc.)

5.2 Results

talk about what we will see now (results only for interpreter, then transpiler and then
compared with each other and a CPU interpreter)

5.2.1 Interpreter
Results only for Interpreter

5.2.2 Transpiler
Results only for Transpiler

5.2.3 Comparison
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter

13

Chapter 6

Conclusion and Future Work

Summarise the results

6.1 Future Work
talk about what can be improved

14

References

Literature

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No
free lunch theorem: A review. In I. C. Demetriou & P. M. Pardalos (Eds.), Ap-
proximation and optimization : Algorithms, complexity and applications (pp. 57–
82). Springer International Publishing. https://doi.org/10.1007/978-3-030-127
67-1_5. (Cit. on p. 1)

Bartlett, D. J., Desmond, H., & Ferreira, P. G. (2024). Exhaustive symbolic regression
[Conference Name: IEEE Transactions on Evolutionary Computation]. IEEE
Transactions on Evolutionary Computation, 28 (4), 950–964. https://doi.org/1
0.1109/TEVC.2023.3280250 (cit. on p. 4)

Besard, T., Churavy, V., Edelman, A., & Sutter, B. D. (2019). Rapid software pro-
totyping for heterogeneous and distributed platforms. Advances in Engineering
Software, 132, 29–46. https://doi.org/10.1016/j.advengsoft.2019.02.002 (cit. on
p. 5)

Besard, T., Foket, C., & De Sutter, B. (2019). Effective extensible programming: Un-
leashing julia on GPUs. IEEE Transactions on Parallel and Distributed Systems,
30 (4), 827–841. https://doi.org/10.1109/TPDS.2018.2872064 (cit. on p. 5)

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations
from data by sparse identification of nonlinear dynamical systems [Publisher:
Proceedings of the National Academy of Sciences]. Proceedings of the National
Academy of Sciences, 113 (15), 3932–3937. https://doi.org/10.1073/pnas.15173
84113 (cit. on p. 4)

Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2005). The GPU as a high performance
computational resource. Proceedings of the 21st Spring Conference on Computer
Graphics, 21–26. https://doi.org/10.1145/1090122.1090126 (cit. on p. 5)

Franchetti, F., Kral, S., Lorenz, J., & Ueberhuber, C. (2005). Efficient utilization of
SIMD extensions [Conference Name: Proceedings of the IEEE]. Proceedings of
the IEEE, 93 (2), 409–425. https://doi.org/10.1109/JPROC.2004.840491 (cit.
on p. 7)

Georgescu, S., Chow, P., & Okuda, H. (2013). GPU acceleration for FEM-based struc-
tural analysis. Archives of Computational Methods in Engineering, 20 (2), 111–
121. https://doi.org/10.1007/s11831-013-9082-8 (cit. on pp. 2, 6)

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: A GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev., 40 (4), 195–206. https://d
oi.org/10.1145/1851275.1851207 (cit. on pp. 2, 6)

15

https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1145/1090122.1090126
https://doi.org/10.1109/JPROC.2004.840491
https://doi.org/10.1007/s11831-013-9082-8
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207

References 16

Han, T. D., & Abdelrahman, T. S. (2011). hiCUDA: High-level GPGPU programming
[Conference Name: IEEE Transactions on Parallel and Distributed Systems].
IEEE Transactions on Parallel and Distributed Systems, 22 (1), 78–90. Retrieved
March 1, 2025, from https://ieeexplore.ieee.org/abstract/document/5445082
(cit. on p. 5)

Hissbach, A.-M., Dick, C., & Lawonn, K. (2022). An overview of techniques for egocentric
black hole visualization and their suitability for planetarium applications. The
Eurographics Association. Retrieved March 2, 2025, from https://doi.org/10.2
312/vmv.20221207. (Cit. on p. 6)

Huang, Q., Huang, Z., Werstein, P., & Purvis, M. (2008). GPU as a general purpose
computing resource [ISSN: 2379-5352]. 2008 Ninth International Conference on
Parallel and Distributed Computing, Applications and Technologies, 151–158. h
ttps://doi.org/10.1109/PDCAT.2008.38 (cit. on p. 5)

Jin, Y., Fu, W., Kang, J., Guo, J., & Guo, J. (2020, January 16). Bayesian symbolic
regression. https://doi.org/10.48550/arXiv.1910.08892. (Cit. on p. 4)

Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming and Evolvable
Machines, 5 (3), 259–269. https://doi.org/10.1023/B:GENP.0000030195.77571
.f9 (cit. on p. 4)

Korns, M. F. (2011). Accuracy in symbolic regression. In R. Riolo, E. Vladislavleva, &
J. H. Moore (Eds.), Genetic programming theory and practice IX (pp. 129–151).
Springer. https://doi.org/10.1007/978-1-4614-1770-5_8. (Cit. on p. 4)

Köster, M., Groß, J., & Krüger, A. (2020). High-performance simulations on GPUs using
adaptive time steps. In M. Qiu (Ed.), Algorithms and architectures for parallel
processing (pp. 369–385). Springer International Publishing. https://doi.org/10
.1007/978-3-030-60245-1_26. (Cit. on p. 6)

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., & Dubey, P.
(2010). Debunking the 100x GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU. Proceedings of the 37th annual international sym-
posium on Computer architecture, 451–460. https://doi.org/10.1145/1815961.1
816021 (cit. on p. 6)

Lin, W.-C., & McIntosh-Smith, S. (2021). Comparing julia to performance portable
parallel programming models for HPC. 2021 International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 94–105. https://doi.org/10.1109/PMBS54543.2021.000
16 (cit. on p. 5)

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction [ISSN: 1530-2075]. 2008 IEEE International Symposium on Parallel
and Distributed Processing, 1–7. https://doi.org/10.1109/IPDPS.2008.4536351
(cit. on pp. 1, 6)

Pfahler, L., & Morik, K. (2020). Semantic search in millions of equations. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 135–143. https://doi.org/10.1145/3394486.3403056 (cit. on p. 4)

Schuurman, D. C. (2013). Step-by-step design and simulation of a simple CPU archi-
tecture. Proceeding of the 44th ACM technical symposium on Computer science
education, 335–340. https://doi.org/10.1145/2445196.2445296 (cit. on p. 6)

https://ieeexplore.ieee.org/abstract/document/5445082
https://doi.org/10.2312/vmv.20221207
https://doi.org/10.2312/vmv.20221207
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.48550/arXiv.1910.08892
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1007/978-1-4614-1770-5_8
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/IPDPS.2008.4536351
https://doi.org/10.1145/3394486.3403056
https://doi.org/10.1145/2445196.2445296

References 17

Tian, X., Saito, H., Girkar, M., Preis, S. V., Kozhukhov, S. S., Cherkasov, A. G., Nelson,
C., Panchenko, N., & Geva, R. (2012). Compiling c/c++ SIMD extensions for
function and loop vectorizaion on multicore-SIMD processors. 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 2349–2358. https://doi.org/10.1109/IPDPSW.2012.292 (cit. on p. 7)

Verbraeck, A., & Eisemann, E. (2021). Interactive black-hole visualization [Conference
Name: IEEE Transactions on Visualization and Computer Graphics]. IEEE
Transactions on Visualization and Computer Graphics, 27 (2), 796–805. https
://doi.org/10.1109/TVCG.2020.3030452 (cit. on p. 6)

Werner, M., Junginger, A., Hennig, P., & Martius, G. (2021, May 13). Informed equation
learning. https://doi.org/10.48550/arXiv.2105.06331. (Cit. on p. 5)

Online sources

Nvidia. (2024, November). CUDA c++ programming guide. Retrieved November 22,
2024, from https://docs.nvidia.com/cuda/cuda-c-programming-guide/. (Cit.
on pp. 6–8)

https://doi.org/10.1109/IPDPSW.2012.292
https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.48550/arXiv.2105.06331
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

18

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Research Question
	Methodology

	Fundamentals and Related Work
	Equation learning
	GPGPU
	Programming GPUs
	PTX

	Compilers
	Interpreters
	Transpilers

	Concept and Design
	Requirements
	Interpreter
	Architecture
	Host
	Device

	Transpiler
	Architecture
	Host
	Device

	Implementation
	Technologies
	Interpreter
	Transpiler

	Evaluation
	Test environment
	Results
	Interpreter
	Transpiler
	Comparison

	Conclusion
	Future Work

	References
	Literature
	Online sources

