
Interpreter and Transpiler for simple
expressions on Nvidia GPUs using Julia

Daniel Roth

M A S T E R A R B E I T

eingereicht am

Fachhochschul-Masterstudiengang

Software Engineering

in Hagenberg

im Januar 2025

Advisor:

DI Dr. Gabriel Kronberger

ii

© Copyright 2025 Daniel Roth

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

iii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated as
such and properly acknowledged. I further declare that this or similar work has not been
submitted for credit elsewhere. This printed copy is identical to the submitted electronic
version.

Hagenberg, January 1, 2025

Daniel Roth

iv

Contents

Declaration iv

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Question . 2
1.3 Thesis Structure . 2

2 Fundamentals and Related Work 4
2.1 Equation learning . 4
2.2 GPGPU . 6

2.2.1 Programming GPUs . 8
2.2.2 PTX . 16

2.3 Compilers . 17
2.3.1 Transpilers . 18
2.3.2 Interpreters . 18

3 Concept and Design 19
3.1 Requirements . 19
3.2 Interpreter . 19

3.2.1 Architecture . 19
3.2.2 Host . 19
3.2.3 Device . 19

3.3 Transpiler . 19
3.3.1 Architecture . 20
3.3.2 Host . 20
3.3.3 Device . 20

4 Implementation 21
4.1 Technologies . 21
4.2 Interpreter . 21
4.3 Transpiler . 21

v

Contents vi

5 Evaluation 22
5.1 Test environment . 22
5.2 Results . 22

5.2.1 Interpreter . 22
5.2.2 Transpiler . 22
5.2.3 Comparison . 22

6 Conclusion 23
6.1 Future Work . 23

References 24
Literature . 24
Online sources . 27

Abstract

This should be a 1-page (maximum) summary of your work in English.

vii

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit, Umfang max. 1 Seite. ...

viii

Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Lastly the methodology on how to answer these questions will be explained.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning or symbolic regression is another field that
can heavily benefit from optimisation. One part of equation learning, is to evaluate the
expressions generated by a search algorithm which can make up a significant portion
of the runtime. This thesis is concerned with optimising the evaluation part to increase
the overall performance of equation learning algorithms.

The following expression 5 − abs(𝑥1) * sqrt(𝑥2)/10 + 2^𝑥3 which contains simple
mathematical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛 is one example
that can be generated by the equation learning algorithm, Usually an equation learning
algorithm generates multiple of such expressions per iteration. Out of these expressions
all possibly relevant ones have to be evaluated. Additionally, multiple different values
need to be inserted for all variables and parameters, drastically increasing the amount
of evaluations that need to be performed.

In his Blog Sutter (2004) described how the free lunch is over in terms of the ever-
increasing performance of hardware like the CPU. He states that to gain additional
performance, developers need to start developing software for multiple cores and not
just hope that on the next generation of CPUs the program magically runs faster.
While this approach means more development overhead, a much greater speed-up can
be achieved. However, in some cases the speed-up achieved by this is still not large
enough and another approach is needed. One of these approaches is the utilisation
of Graphics Processing Units (GPUs) as an easy and affordable option as compared to
compute clusters. Especially when talking about performance per dollar, GPUs are very

1

1. Introduction 2

inexpensive as found by Brodtkorb et al. (2013). Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using GPUs for weather simulation. In addition
to computer simulations, GPU acceleration also can be found in other places such as
networking (S. Han et al., 2010) or structural analysis of buildings (Georgescu et al.,
2013).

1.2 Research Question
With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations using GPUs. Therefore,
the following research questions are formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on GPUs?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a GPU than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
actually feasible. If it is feasible, it is important to evaluate if evaluating the expressions
on the GPU actually improves the performance over a parallelised CPU evaluator.
To answer if the GPU evaluator is faster than the CPU evaluator, the last research
question is important. As there are two major ways of implementing an evaluator on
the GPU, they need to be implemented and evaluated to finally state if evaluating
expressions on the GPU is faster and if so, which type of implementation results in the
best performance.

1.3 Thesis Structure
In order to answer the research questions, this thesis is divided into the following chap-
ters:
Chapter 2: Fundamentals and Related Work

In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
The details of the implementation with the used technologies are covered, such

1. Introduction 3

as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. All three evaluators will be compared against each other
and the form of the expressions used for the comparisons are outlined. Finally, the
results of the comparison of the GPU and CPU evaluators are presented to show
which of these yields the best performance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.

Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning or symbolic
regression to establish common knowledge of the topic and problem this thesis is trying
to solve. First the field of equation learning is explored which helps to contextualise the
topic of this thesis. The main part of this chapter is split into two sub-parts. The first
part is exploring research that has been done in the field of general purpose computations
on the GPU (GPGPU) as well as the fundamentals of it. Focus lies on exploring how
graphics processing units (GPUs) are used to achieve substantial speed-ups and when
and where they can be effectively employed. The second part describes the basics of
how interpreters and compilers are built and how they can be adapted to the workflow
of programming GPUs. When discussing GPU programming concepts, the terminology
used is that of Nvidia and may differ from that used for AMD GPUs.

2.1 Equation learning
Equation learning is a field of research that can be used for understanding and discover-
ing equations from a set of data from various fields like mathematics and physics. Data
is usually much more abundant while models often are elusive which is demonstrated by
Guillemot (2022) where they explain how validating the models against large amounts
of data is a big part in creating such models. Because of this effort, generating equations
with a computer can more easily lead to discovering equations that describe the observed
data. Brunton et al. (2016) describe an algorithm that leverages equation learning to
discover equations for physical systems. A more literal interpretation of equation learn-
ing is demonstrated by Pfahler and Morik (2020). They use machine learning to learn
the form of equations. Their aim was to simplify the discovery of relevant publications
by the equations they use and not by technical terms, as they may differ by the field of
research. However, this kind of equation learning is not relevant for this thesis.

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Using ge-
netic programming (GP) for different problems, including symbolic regression, was first
described by Koza (1994). He described that finding a computer program to solve a
problem for a given input and output, can be done by traversing the search space of
all solutions. This fits well for the goal of symbolic regression, where a mathematical

4

2. Fundamentals and Related Work 5

expression needs to be found to describe a problem with specific inputs and outputs.
Later, Koza (2010) provided an overview of results that were generated with the help
of GP and were competitive with human solutions, showing how symbolic regression is
a useful tool. In their book Symbolic Regression, Kronberger et al. (2024) show how
symbolic regression can be applied for real world scenarios. They also describe symbolic
regression in great detail, while being tailored towards beginners and experts.

Keijzer (2004) and Korns (2011) presented ways of improving the quality of symbolic
regression algorithms, making symbolic regression more feasible for problem-solving.
Bartlett et al. (2024) describe an exhaustive approach for symbolic regression which
can find the true optimum for perfectly optimised parameters while retaining simple
and interpretable results. Alternatives to GP for symbolic regression also exist with
one proposed by Jin et al. (2020). Their approach increased the quality of the results
noticeably compared to GP alternatives. Another alternative to heuristics like GP is
the usage of neural networks. One such alternative has been introduced by Martius and
Lampert (2016) where they used a neural network for their equation learner with mixed
results. Later, an extension has been provided by Sahoo et al. (2018). They introduced
the division operator, which led to much better results. Further improvements have been
described by Werner et al. (2021) with their informed equation learner. By incorporating
domain expert knowledge they could limit the search space and find better solutions for
particular domains. One drawback of these three implementations is the fact that their
neural networks are fixed. An equation learner which can change the network at runtime
and therefore evolve over time is proposed by Dong et al. (2024). Their approach further
improved the results of neural network equation learners. In their work, Lemos et al.
(2022) also used a neural network for symbolic regression. They were able to find an
equivalent to Newton’s law of gravitation and rediscovered Newton’s second and third
law only with trajectory data of bodies of our solar system. Although these laws were
already known, this research has shown how neural networks and machine learning in
general have great potential. An implementation for an equation learner in the physics
domain is proposed by Sun et al. (2023). Their algorithm was specifically designed
for nonlinear dynamics often occurring in physical systems. When compared to other
implementations their equation learner was able to create better results but have the
main drawback of high computational cost. As seen by these publications, increasing the
quality of generated equations and also increasing the speed of finding these equations
is a central part in symbolic regression and equation learning in general.

As described earlier, the goal of equation learning is to find an expression that fits a
given set of data. The data usually consists of a set of inputs that have been applied to
the unknown expression and the output after the input has been applied. An example
for such data is described by Werner et al. (2021). In one instance they want to find the
power loss formula for an electric machine. They used four inputs, direct and quadratic
current as well as temperature and motor speed, and they have an observed output
which is the power loss. Now for an arbitrary problem with different input and outputs,
the equation learner tries to find an expression that fits this data (Koza, 1994). Fitting
in this context means that when the input is applied to the expression, the result will
be the same as the observed output. In order to avoid overfitting Bomarito et al. (2022)
have proposed a way of using Bayesian model selection to combat overfitting and reduce
the complexity of the generated expressions. This also helps with making the expressions

2. Fundamentals and Related Work 6

more generalisable and therefore be applicable to unseen inputs. A survey conducted
by Dabhi and Chaudhary (2012) shows how overfitting is not desirable and why more
generalisable solutions are preferred. To generate an equation, first the operators need to
be defined that make up the equation. It is also possible to define a maximum length for
an expression as proposed by Bartlett et al. (2024). Expressions also consist of constants
as well as variables which represent the inputs. Assuming that a given problem has three
variables, the equation learner could generate an expression as seen in 2.1 where 𝑥𝑛 are
the variables and 𝑂 is the output which should correspond to the observed output for
the given variables.

𝑂 = 5 − abs(𝑥1) * sqrt(𝑥2)/10 + 2^𝑥3 (2.1)

A typical equation learner generates multiple expressions at once. If the equation
learner generates 300 expressions and each expression needs to be evaluated 50 times
to get the best parametrisation for this expression, the total number of evaluations is
300 * 50 = 15 000. However, it is likely that multiple runs or generations in the context
of GP need to be performed. The number of generations is dependent to the problem,
but assuming a maximum of 100 generations the total number of evaluations is equal to
300 * 50 * 100 = 1 500 000. These values have been taken from the equation learner for
predicting discharge voltage curves of batteries as described by Kronberger et al. (2024).
Their equation learner converged after 54 generations, resulting in evaluating 800 000
expressions. Depending on the complexity of the generated expressions, performing all
of these evaluations takes up a lot of the runtime. Their results took over two days on an
eight core desktop CPU. While they did not provide runtime information for all problems
they tested, the voltage curve prediction was the slowest. The other problems were in
the range of a few seconds and up to a day. Especially the problems that took several
hours to days to finish show, that there is still room for performance improvements.
While a better CPU with more cores can be used, it is interesting to determine, if using
Graphics cards can yield noticeable better performance or not, which is the goal of this
thesis.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many dif-
ferent applications. Originally they were designed to improve performance and visual
quality in games. Dokken et al. (2005) first described the usage of GPUs for general
purpose programming (GPGPU). They have shown how the graphics pipeline can be
used for GPGPU programming. Because this approach also requires the programmer to
understand the graphics terminology, this was not a great solution. Therefore, Nvidia
released CUDA1 in 2007 with the goal of allowing developers to program GPUs indepen-
dent of the graphics pipeline and terminology. A study of the programmability of GPUs
with CUDA and the resulting performance has been conducted by Huang et al. (2008).
They found that GPGPU programming has potential, even for non-embarassingly paral-
lel problems. Research is also done in making the low level CUDA development simpler.
T. D. Han and Abdelrahman (2011) have described a directive-based language to make

1https://developer.nvidia.com/cuda-toolkit

https://developer.nvidia.com/cuda-toolkit

2. Fundamentals and Related Work 7

development simpler and less error-prone, while retaining the performance of handwrit-
ten code. To drastically simplify CUDA development, Besard et al. (2019b) showed that
it is possible to develop with CUDA in the high level programming language Julia2 with
similar performance to CUDA written in C. In a subsequent study Lin and McIntosh-
Smith (2021) found that high performance computing (HPC) on the CPU and GPU
in Julia performs similar to HPC development in C. This means that Julia can be a
viable alternative to Fortran, C and C++ in the HPC field and has the additional ben-
efit of developer comfort since it is a high level language with modern features such
as garbage-collectors. Besard et al. (2019a) have also shown how the combination of
Julia and CUDA help in rapidly developing HPC software. While this thesis in general
revolves around CUDA, there also exist alternatives by AMD called ROCm3 and a ven-
dor independent alternative called OpenCL4. If not specified otherwise, the following
section and its subsections use the information presented by Nvidia (2025b) in their
CUDA programming guide.

While in the early days of GPGPU programming a lot of research has been done to
assess if this approach is feasible, it now seems obvious to use GPUs to accelerate algo-
rithms. GPUs have been used early to speed up weather simulation models. Michalakes
and Vachharajani (2008) proposed a method for simulating weather with the Weather
Research and Forecast (WRF) model on a GPU. With their approach, they reached a
speed-up of the most compute intensive task of 5 to 20, with little GPU optimisation
effort. They also found that the GPU usage was low, meaning there are resources and
potential for more detailed simulations. Generally, simulations are great candidates for
using GPUs, as they can benefit heavily from a high degree of parallelism and data
throughput. Köster et al. (2020b) have developed a way of using adaptive time steps on
the GPU to considerably improve the performance of numerical and discrete simulations.
In addition to the performance gains they were able to retain the precision and con-
straint correctness of the simulation. Black hole simulations are crucial for science and
education for a better understanding of our world. Verbraeck and Eisemann (2021) have
shown that simulating complex Kerr (rotating) black holes can be done on consumer
hardware in a few seconds. Schwarzschild black hole simulations can be performed in
real-time with GPUs as described by Hissbach et al. (2022) which is especially helpful for
educational scenarios. While both approaches do not have the same accuracy as detailed
simulations on supercomputers, they show how a single GPU can yield similar accuracy
at a fraction of the cost. Software network routing can also heavily benefit from GPU
acceleration as shown by S. Han et al. (2010), where they achieved a significantly higher
throughput than with a CPU only implementation. Finite element structural analysis
is an essential tool for many branches of engineering and can also heavily benefit from
the usage of GPUs as demonstrated by Georgescu et al. (2013). However, it also needs
to be noted, that GPUs are not always better performing than CPUs as illustrated by
Lee et al. (2010), but they still can lead to performance improvements nonetheless.

2https://julialang.org/
3https://www.amd.com/de/products/software/rocm.html
4https://www.khronos.org/opencl/

https://julialang.org/
https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/

2. Fundamentals and Related Work 8

Figure 2.1: Overview of the architecture of a CPU (left) and a GPU (right). Note the
higher number of simpler and smaller cores on the GPU (Nvidia, 2025b).

2.2.1 Programming GPUs
The development process on a GPU is vastly different from a CPU. A CPU has tens or
hundreds of complex cores with the AMD Epyc 99655 having a staggering 192 of those
complex cores and twice as many threads. A guide for a simple one core 8-bit CPU
has been published by Schuurman (2013). He describes the different and complex parts
of a CPU core. Modern CPUs are even more complex, with dedicated fast integer and
floating-point arithmetic gates as well as logic gates, sophisticated branch prediction and
much more. This makes a CPU perfect for handling complex control flows on a single
program strand and on modern CPUs even multiple strands simultaneously. However,
as seen in section 2.2, this often isn’t enough. On the other hand, a GPU contains
thousands or even tens of thousands of cores. For example, the GeForce RTX 50906

contains a total of 21760 CUDA cores. To achieve this enormous core count a single
GPU core has to be much simpler than one CPU core. As described by Nvidia (2025b)
a GPU designates much more transistors towards floating-point computations. This
results in less efficient integer arithmetic and control flow handling. There is also less
Cache available per core and clock speeds are usually also much lower than those on a
CPU. An overview of the differences of a CPU and a GPU architecture can be seen in
figure 2.1.

Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice
when considering improving the performance of an algorithm. Because of the high num-
ber of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD
architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states
that there is a single stream of instructions that is executed on a huge number of data

5https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
6https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

2. Fundamentals and Related Work 9

streams. Franchetti et al. (2005) and Tian et al. (2012) describe ways of using SIMD
instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7
respectively by using SIMD instructions instead of serial computations. Extending this
to GPUs which are specifically built for SIMD/data parallel calculations shows why
they are so powerful despite having less complex and slower cores than a CPU.

Thread Hierarchy and Tuning

The thousands of cores on a GPU, also called threads, are grouped together in sev-
eral categories. This is the Thread hierarchy of GPUs. The developer can influence
this grouping to a degree which allows them to tune their algorithm for optimal perfor-
mance. In order to develop a well performing algorithm, it is necessary to know how this
grouping works. Tuning the grouping is unique to each algorithm and also dependent
on the GPU used, which means it is important to test a lot of different configurations
to achieve the best possible result. This section aims at exploring the thread hierarchy
and how it can be tuned to fit an algorithm.

At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is
a hardware unit responsible for scheduling and executing threads and also contains
the registers used by these threads. An SM is always executing a group of 32 threads
simultaneously, and this group is called a warp. The number of threads that can be
started is virtually unlimited. However, threads must be grouped in a block, with one
block typically containing a maximum of 2048 threads but is often configured to be
less. Therefore, if more than 2048 threads are required, more blocks must be created.
Blocks can also be grouped thread block clusters which is optional, but can be useful
in certain scenarios. All thread blocks or thread block clusters are part of a grid, which
manifests as a dispatch of the code run the GPU, also called kernel (AMD, 2025b).
All threads in one block have access to some shared memory, which can be used for
L1 caching or communication between threads. It is important that the blocks can be
scheduled independently, with no dependencies between them. This allows the scheduler
to schedule blocks and threads as efficiently as possible. All threads within a warp are
guaranteed to be part of the same block, and are therefore executed simultaneously and
can access the same memory addresses. Figure 2.2 depicts how threads in a block are
grouped into warps for execution and how they share memory.

A piece of code that is executed on a GPU is written as a kernel which can be
configured. The most important configuration is how threads are grouped into blocks.
The GPU allows the kernel to allocate threads and blocks and block clusters in up to
three dimensions. This is often useful because of the already mentioned shared memory,
which will be explained in more detail in section 2.2.1. Considering the case where an
image needs to be blurred, it not only simplifies the development if threads are arranged
in a 2D grid, it also helps with optimising memory access. As the threads in a block, need
to access a lot of the same data, this data can be loaded in the shared memory of the
block. This allows the data to be accessed much quicker compared to when threads are
allocated in only one dimension. With one dimensional blocks it is possible that threads
assigned to nearby pixels, are part of a different block, leading to a lot of duplicate data
transfer. Although the size in each dimension of the blocks can be almost arbitrary,
blocks that are too large might lead to other problems which are described in more

2. Fundamentals and Related Work 10

Figure 2.2: An overview of the thread hierarchy with blocks being split into multiple
warps and their shared memory (AMD, 2025b).

detail in section 2.2.1.
All threads in a warp start at the same point in a program, they have their own

instruction address, allowing them to work independently. Because of the SIMD archi-
tecture, all threads in a warp must execute the same instructions and if threads start
diverging, the SM must pause threads with different instructions and execute them later.
Figure 2.3 shows how such divergences can impact performance. The situation described
by the figure also shows, that after the divergent thread would reconverge, this does not
happen and leads to T2 being executed after T1 and T3 are finished. In situations where
a lot of data dependent thread divergence happens, most of the benefits of using a GPU
have vanished.

Threads not executing the same instruction is against the SIMD principle but can
happen in reality, due to data dependent branching. Consequently, this leads to bad re-
source utilisation, which in turn leads to worse performance. Another possibility of
threads being paused (inactive threads) is the fact that sometimes, the number of
threads started is not divisible by 32. In such cases, the last warp still contains 32
threads but only the threads with work are executed.

2. Fundamentals and Related Work 11

Figure 2.3: Thread T2 wants to execute instruction B while T1 and T3 want to execute
instruction A. Therefore T2 will be an inactive thread this cycle and active once T1 and
T3 are finished. This means that now the divergent threads are serialised.

Modern GPUs implement the so called Single-Instruction Multiple-Thread (SIMT)
architecture. In many cases a developer does not need to know the details of SIMT
and can develop fast and correct programs with just the SIMD architecture in mind.
However, leveraging the power of SIMT can yield substantial performance gains by
re-converging threads once data dependent divergence occurred. A proposal for a re-
convergence algorithm was proposed by Collange (2011) where they have shown that
these approaches help with hardware occupation, resulting in improved performance as
threads are now no longer fully serialised. Another approach for increasing occupancy
using the SIMT architecture is proposed by Fung and Aamodt (2011). They introduced
a technique for compacting thread blocks by moving divergent threads to new warps
until they reconverge. This approach resulted in a noticeable speed-up between 17%
and 22%. Another example where a SIMT aware algorithm can perform better was
proposed by Köster et al. (2020a). While they did not implement techniques for thread
re-convergence, they implemented a thread compaction algorithm. On data-dependent
divergence it is possible for threads to end early, leaving a warp with only partial active
threads. This means the deactivated threads are still occupied and cannot be used for
other work. Their thread compaction tackles this problem by moving active threads into
a new thread block, releasing the inactive threads to perform other work. With this they
were able to gain a speed-up of roughly 4 times compared to previous implementations.

2. Fundamentals and Related Work 12

Figure 2.4: The layout of the memory in the GPU. The connections between the memory
regions can be seen as well as the different kinds of memory available.

Memory Model

On a GPU there are two parts that contribute to the performance of an algorithm. The
one already looked at is the compute-portion of the GPU. This is necessary because if
threads are serialised or run inefficiently, there is nothing that can make the algorithm
execute faster. However, algorithms run on a GPU usually require huge amounts of
data to be processed, as they are designed for exactly that purpose. The purpose of this
section is to explain how the memory model of the GPU works and how it can influence
the performance of an algorithm. In figure 2.4 the memory layout and the kinds of
memory available are depicted. The different parts will be explained in this section.

On a GPU there are multiple levels and kinds of memory available. All these levels
and kinds have different purposes they are optimised for. This means that it is important
to know what they are and how they can be best used for specific tasks. On the lowest
level threads have registers and local memory available. Registers is the fastest way
to access memory but is also the least abundant memory with up to a maximum of
255 32-Bit registers per thread on Nvidia and 256 on AMD (AMD, 2025a). However,
using all registers of a thread can lead to other problems which are described in more
detail in section 2.2.1. On the other side, the thread local memory is significantly slower

2. Fundamentals and Related Work 13

than registers. This is due to the fact, that local memory is actually stored in global
memory and therefore has the same limitations which are explained later. This means
it is important to try and avoid local memory as much as possible. Local memory is
usually only used when a thread uses too many registers. The compiler will then spill
the remaining data into local memory and loads it into registers once needed, drastically
slowing down the application.

Shared memory is the next tier of memory on a GPU. Unlike local memory and
registers, shared memory is shared between all threads inside a block. The amount of
shared memory is depending on the GPU architecture but for Nvidia it hovers at around
100 Kilobyte (KB) per block. While this memory is slower than registers, its primary
use-case is communicating and sharing data between threads in a block. It is advised
that all threads in a block access a lot of overlapping data, as then data from global
memory can be loaded into faster shared memory once and then accessed multiple times
further increasing performance. Loading data into shared memory and accessing that
data has to be done manually. Because shared memory is part of the unified data cache,
it can either be used as a cache or for manual use, meaning a developer can allocate more
shared memory towards caching if needed. Another feature of shared memory are the
so-called memory banks. Shared memory is always split into 32 equally sized memory
modules also called memory banks. All available memory addresses lie in one of these
banks. This means if two threads access two different memory addresses which lie in
different banks, the access can be performed simultaneously, increasing the throughput.

The most abundant and slowest memory is the global memory and resides in device
memory. A key constraint of device memory and therefore global memory is, that is
accessed in either 32, 64 or 128 byte chunks. This means if a thread wants to access
8 bytes from global memory, alongside the 8 bytes, the 24 bytes after the requested 8
bytes are also transferred. As a result, the throughput is only a fourth of the theoretical
maximum. Therefore, it is important to follow optimal access patterns. What these
optimal patterns are, are architecture dependent and are described in the according
sections in the CUDA programming guide.

A small portion of device memory is allocated to constant memory. Constant memory
is accessible by all threads and as the name implies, can not be written to by threads.
It can be initialised by the CPU when starting a kernel if needed. As constant memory
has a separate cache, it can be used to speed-up data access for constant and frequently
accessed data.

Another special kind of memory is the texture and surface memory. According to
AMD (2025b) texture memory is read-only memory, while surface memory can also be
written to, which is the only difference between these two kinds of memory. Nvidia does
not explicitly state this behaviour, but due to the fact that accessing textures is only
performed via caches, it is implied that on Nvidia GPUs, texture memory is also read-
only. As the name implies, this kind of memory is optimised for accessing textures. This
means that threads of the same warp, accessing data which is spatially close together,
will result in increased performance. As already mentioned, surface memory works the
same way, with the difference, that it can be written to. It is therefore well suited for
manipulating two- or three-dimensional data.

2. Fundamentals and Related Work 14

Compute Capability 8.9 10.x
Max. number of threads per block 1 024
Warp size 32 threads
Max. number of warps per SM 48 64
Max. number of blocks per SM 24 32
Max. number of threads per SM 1 536 2 048
Number of 32-bit registers per SM 64 000
Max. number of 32-bit registers per block 64 000
Max. number of 32-bit registers per thread 255
Max. amount of shared memory per SM 100 Kilobytes 228 Kilobytes
Max. amount of shared memory per block 99 Kilobytes 227 Kilobytes

Table 2.1: A simplified version of the technical specifications for the Compute Capa-
bilities 8.9 and 10.x (Nvidia, 2025b). These correspond to the Nvidia Ada Lovelace and
Blackwell microarchitectures.

Occupancy

Occupancy describes the utilisation of a GPU. A high occupancy means, that there are
Warps executing, or in other words, the cores are occupied with work. This is important,
as a low occupancy means that the GPU is waiting for work to be scheduled and is there-
fore idle. As a result, it is important to achieve high occupancy in order to increase the
performance of an algorithm. It needs to be noted, that occupancy is not the only op-
tion for improving performance. As it is possible for the GPU to have a high occupancy
while performing a lot of unnecessary or redundant work or utilising compute-resources
that are slower. An example for the latter would be developing an algorithm that uses
64-bit floating point (FP64) numbers while 32-bit floating point (FP32) numbers would
have sufficient accuracy. Because GPUs tend to have fewer FP64 compute-resources
than they have FP32 compute-resources, performing FP64 operations will take longer.
However, despite these drawbacks, having low occupancy will very likely result in per-
formance degradation while high occupancy will either improve performance or do no
harm otherwise. Ways of achieving high occupancy will be outlined in this section as
most other performance problems can be solved algorithmically.

When starting a kernel, the most important configuration is the number of threads
and thread blocks that need to be started. This is important, as this has other effects
on occupancy as well. In table 2.1 the most notable limitations are presented that
can affect occupancy. These limitations need to be considered when choosing a kernel
configuration. It is important to note, that depending on the GPU and problem, the
occupancy tuning might differ, and the same approach might perform well on one GPU
but perform poorly on another GPU. Therefore, the things discussed here are only
guidelines and tools like Nvidia Nsight Compute7 and Nsight Systems8 are essential for
performance tuning. Nsight compute also contains an occupancy calculator which takes
a kernel and computes how the configuration performs in terms of occupancy and also

7https://developer.nvidia.com/nsight-compute
8https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems

2. Fundamentals and Related Work 15

lets the developer try out different configurations (Nvidia, 2025c).
In general, it is important to have as many warps as possible ready for execution.

While this means that a lot of warps could be executed but are not, this is actually
desired. A key feature of GPUs is so-called latency hiding, meaning that while a warp
waits for data to be retrieved for example, another warp ready for execution can now be
run. With low occupancy, and therefore little to no warps waiting for executing, latency
hiding does not work, as now the hardware is idle. As a result, the runtime increases
which also explains why high occupancy is not guaranteed to result in performance
improvements while low occupancy can and often will increase the runtime.

As seen in table 2.1, there exist different limitations that can impact occupancy. The
number of warps per SM is important, as this means this is the degree of parallelism
achievable per SM. If due to other limitations, the number of warps per SM is below
the maximum, there is idle hardware. One such limitation is the number of registers per
block and SM. In the case of compute capability 8.9, one SM can handle 32 * 48 = 1 536
threads. This leaves 64 000/1 536 ≈ 41 registers per thread, which is lower than the
theoretical maximum of 255 registers per thread. Typically, one register is mapped to
one variable in the kernel code, meaning a developer can use up to 41 variables in their
code. However, if the variable needs 64 bits, the register usage doubles, as all registers
on a GPU are 32-bit. On a GPU with compute capability 10.x a developer can use up to
64 000/2 048 ≈ 31 registers. Of course a developer can use more registers, but this results
in less occupancy. However, depending on the algorithm using more registers might be
more beneficial to performance than the lower occupancy, in which case occupancy is
not as important. If a developer needs more than 255 registers for their variables the
additional variables will spill into local memory which is, as described in section 2.2.1,
not desirable.

Additionally, shared memory consumption can also impact the occupancy. If for
example a block needs all the available shared memory, which is almost the same as
the amount of shared memory per SM, this SM can only serve this block. On compute
capability 10.x, this would mean that occupancy would be at maximum 50% as a block
can have up to 1 024 threads and an SM supports up to 2 048 threads. Again, in such
cases it needs to be determined, if the performance gain of using this much shared
memory is worth the lower occupancy.

Balancing these limitations and therefore the occupancy and performance often re-
quires a lot of trial and error with help of the aforementioned tools. In cases where
occupancy is already high and the amount of warps ready for execution is also high,
other areas for performance improvements need to be explored. Algorithmic optimisa-
tion is always a good idea. Some performance improvements can be achieved by altering
the computations to use different parts of the GPU. One of such optimisations is using
FP32 operations wherever possible. Another well suited optimisation is to rewrite the
algorithm to use as many Fused Multiply-Add (FMA) instructions. FMA is a special
floating point instruction, that multiplies two values and adds a third, all in a single
clock cycle (Nvidia, 2025a). However, the result might slightly deviate from performing
these two operations separately, which means in accuracy sensitive scenarios, this in-
struction should be avoided. If the compiler detects a floating point operation with the
FMA structure, it will automatically be compiled to an FMA instruction. To prevent
this, in C++ the developer can call the functions __fadd_ and __fmul_ for addition

2. Fundamentals and Related Work 16

and multiplication respectively.

2.2.2 Parallel Thread Execution

While in most cases a GPU in a higher level language like C++ or even Julia9, it is
also possible to program GPUs with the low level language Parallel Thread Execution
(PTX) developed by Nvidia. A brief overview of what PTX is and how it can be used
to program GPUs is given in this section. Information in this section is taken from the
PTX documentation (Nvidia, 2025d) if not stated otherwise.

PTX defines a virtual machine with an own instruction set architecture (ISA) and
is designed for data-parallel processing on a GPU. It is an abstraction of the underlying
hardware instruction set, allowing PTX code to be portable across Nvidia GPUs. In
order for PTX code to be usable for the GPU, the compiler is responsible for compiling
the code to the hardware instruction set of the GPU it is run on. A developer typically
writes a kernel in CUDA using C++, for example, and the Nvidia compiler generates
the PTX code for that kernel. The concepts for programming the GPU with PTX
and CUDA are the same, apart from the terminology which is slightly different. For
consistency, the CUDA terminology will continue to be used.

Syntactically PTX resembles Assembly style code. Every PTX code must have a
.version directive which indicates the PTX version and an optional .target directive
which indicates the compute capability. If the program works in 64 bit addresses, the
optional .address_size directive can be used to indicate that, which simplifies the code
for such applications. After these directives, the actual code is written. As each PTX
code needs an entry point (the kernel) the .entry directive indicates the name of the
kernel and the parameters needed. It is also possible to write helper functions with
the .func directive. Inside the kernel or a helper function, normal PTX code can be
written. Because PTX is very low level, it assumes an underlying register machine,
therefore a developer needs to think about register management. This includes loading
data from global or shared memory into registers if needed. Code for manipulating data
like addition and subtraction generally follow the structure operation.datatype followed
by three parameters for that operation. For adding two FP32 values together and storing
them in the register %n, the code looks like the following:

add.f32 \%n, 0.1, 0.2;

Loops in the classical sense do not exist in PTX. Alternatively a developer needs to
define jump targets for the beginning and end of the loop. The code in 2.1 shows how a
function with simple loop can be implemented. The loop counts down to zero from the
passed parameter 𝑁 which is loaded into the register %n in line 6. If the value in the
register %n reached zero the loop branches at line 9 to the jump target at line 12 and
the loop has finished. All other used directives and further information on writing PTX
code can be taken from the PTX documentation (Nvidia, 2025d).

9https://juliagpu.org/

https://juliagpu.org/

2. Fundamentals and Related Work 17

1 .func loop(.param .u32 N)
2 {
3 .reg .u32 \%n;
4 .reg .pred \%p;
5
6 ld.param.u32 \%n, [N];
7 Loop:
8 setp.eq.u32 \%p, \%n, 0;
9 @\%p bra Done;

10 sub.u32 \%n, \%n, 1;
11 bra Loop;
12 Done:
13 }

Program 2.1: A PTX program fragment depicting how loops can be implemented.

2.3 Compilers
Compilers are a necessary tool for many developers. If a developer wants to run their
program it is very likely they need one. As best described by Aho et al. (2006) in their
dragon book, a compiler takes code written by a human in some source language and
translates it into a destination language readable by a computer. This section briefly
explores what compilers are and research done in this old field of computer science.
Furthermore, the topics of transpilers and interpreters are explored, as their use-cases
are very similar.

Aho et al. (2006) and Cooper and Torczon (2022) describe how a compiler can be
developed, with the latter focusing on more modern approaches. They describe how a
compiler consists of two parts, the analyser, also called frontend, and the synthesiser also
called backend. While the front end is responsible for ensuring syntactic and semantic
correctness and converts the source code into an intermediate representation for the
backend. The backend is then responsible to generate target code from the intermediate
representation. This target code can be assembly or anything else that is needed for
a specific use-case. This intermediate representation also makes it simple to swap out
frontends or backends. The Gnu Compiler Collection GCC (2025) takes advantage of
using different frontends to provide support for many languages including C, C++,
Ada and more. Instead of compiling source code for specific machines directly, many
languages compile for virtual machines instead. Notable examples are the Java Virtual
Machine (JVM) (Lindholm et al., 2025) and the low level virtual machine (LLVM)
(Lattner & Adve, 2004). Such virtual machines provide a bytecode which can be used
as a target language for compilers. A huge benefit of such virtual machines is the ability
for one program to be run on all physical machines the virtual machine exists for,
without the developer needing to change that program (Lindholm et al., 2025).

Continue with Grammer, parser generators like antlr; then byte cod; then a bit about
transpilers and I think thats it for this section

2. Fundamentals and Related Work 18

2.3.1 Transpilers
talk about what transpilers are and how to implement them. If possible also gpu specific
transpilation.

2.3.2 Interpreters
What are interpreters; how they work; should mostly contain/reference gpu interpreters

Chapter 3

Concept and Design

introduction to what needs to be done. also clarify terms “Host” and “Device” here

3.1 Requirements and Data
short section. Multiple expressions; vars for all expressions; params unique to expression;
operators that need to be supported

3.2 Interpreter
as introduction to this section talk about what “interpreter” means in this context. so
“gpu parses expr and calculates”

3.2.1 Architecture
talk about the coarse grained architecture on how the interpreter will work. (.5 to 1
page probably)

3.2.2 Host
talk about the steps taken to prepare for GPU interpretation

3.2.3 Device
talk about how the actual interpreter will be implemented

3.3 Transpiler
as introduction to this section talk about what “transpiler” means in this context. so
“cpu takes expressions and generates ptx for gpu execution”

19

3. Concept and Design 20

3.3.1 Architecture
talk about the coarse grained architecture on how the transpiler will work. (.5 to 1 page
probably)

3.3.2 Host
talk about how the transpiler is implemented

3.3.3 Device
talk about what the GPU does. short section since the gpu does not do much

Chapter 4

Implementation

4.1 Technologies
Short section; CUDA, PTX, Julia, CUDA.jl

Probably reference the performance evaluation papers for Julia and CUDA.jl

4.2 Interpreter
Talk about how the interpreter has been developed.

4.3 Transpiler
Talk about how the transpiler has been developed

21

Chapter 5

Evaluation

5.1 Test environment

Explain the hardware used, as well as the actual data (how many expressions, variables
etc.)

5.2 Results

talk about what we will see now (results only for interpreter, then transpiler and then
compared with each other and a CPU interpreter)

5.2.1 Interpreter
Results only for Interpreter

5.2.2 Transpiler
Results only for Transpiler

5.2.3 Comparison
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter

22

Chapter 6

Conclusion and Future Work

Summarise the results

6.1 Future Work
talk about what can be improved

23

References

Literature

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,
techniques, and tools (2nd edition). Addison-Wesley Longman Publishing Co.,
Inc. (Cit. on p. 17).

Bartlett, D. J., Desmond, H., & Ferreira, P. G. (2024). Exhaustive symbolic regression.
IEEE Transactions on Evolutionary Computation, 28 (4), 950–964. https://doi
.org/10.1109/TEVC.2023.3280250 (cit. on pp. 5, 6)

Besard, T., Churavy, V., Edelman, A., & Sutter, B. D. (2019a). Rapid software pro-
totyping for heterogeneous and distributed platforms. Advances in Engineering
Software, 132, 29–46. https://doi.org/10.1016/j.advengsoft.2019.02.002 (cit. on
p. 7)

Besard, T., Foket, C., & De Sutter, B. (2019b). Effective extensible programming: Un-
leashing julia on GPUs. IEEE Transactions on Parallel and Distributed Systems,
30 (4), 827–841. https://doi.org/10.1109/TPDS.2018.2872064 (cit. on p. 7)

Bomarito, G. F., Leser, P. E., Strauss, N. C. M., Garbrecht, K. M., & Hochhalter,
J. D. (2022). Bayesian model selection for reducing bloat and overfitting in
genetic programming for symbolic regression. Proceedings of the Genetic and
Evolutionary Computation Conference Companion, 526–529. https://doi.org/1
0.1145/3520304.3528899 (cit. on p. 5)

Brodtkorb, A. R., Hagen, T. R., & Sætra, M. L. (2013). Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel and
Distributed Computing, 73 (1), 4–13. https://doi.org/10.1016/j.jpdc.2012.04.00
3 (cit. on p. 2)

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 113 (15), 3932–3937. https://doi.org/10.1
073/pnas.1517384113 (cit. on p. 4)

Collange, C. (2011, September). Stack-less SIMT reconvergence at low cost (Research
Report). ENS Lyon. https://hal.science/hal-00622654. (Cit. on p. 11)

Cooper, K. D., & Torczon, L. (2022). Engineering a compiler (3rd ed.). Elsevier. Re-
trieved March 18, 2025, from http://dx.doi.org/10.1016/C2014-0-01395-0.
(Cit. on p. 17)

Dabhi, V. K., & Chaudhary, S. (2012). A survey on techniques of improving generaliza-
tion ability of genetic programming solutions. https://doi.org/10.48550/ARXI
V.1211.1119 (cit. on p. 6)

24

https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1145/3520304.3528899
https://doi.org/10.1145/3520304.3528899
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://hal.science/hal-00622654
http://dx.doi.org/10.1016/C2014-0-01395-0
https://doi.org/10.48550/ARXIV.1211.1119
https://doi.org/10.48550/ARXIV.1211.1119

References 25

Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2005). The GPU as a high performance
computational resource. Proceedings of the 21st Spring Conference on Computer
Graphics, 21–26. https://doi.org/10.1145/1090122.1090126 (cit. on p. 6)

Dong, J., Zhong, J., Liu, W.-L., & Zhang, J. (2024). Evolving equation learner for
symbolic regression. IEEE Transactions on Evolutionary Computation, 1–1. ht
tps://doi.org/10.1109/TEVC.2024.3404650 (cit. on p. 5)

Franchetti, F., Kral, S., Lorenz, J., & Ueberhuber, C. (2005). Efficient utilization of
SIMD extensions. Proceedings of the IEEE, 93 (2), 409–425. https://doi.org/10
.1109/JPROC.2004.840491 (cit. on p. 9)

Fung, W. W. L., & Aamodt, T. M. (2011). Thread block compaction for efficient SIMT
control flow. 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 25–36. https://doi.org/10.1109/HPCA.2011.5749714
(cit. on p. 11)

Georgescu, S., Chow, P., & Okuda, H. (2013). GPU acceleration for FEM-based struc-
tural analysis. Archives of Computational Methods in Engineering, 20 (2), 111–
121. https://doi.org/10.1007/s11831-013-9082-8 (cit. on pp. 2, 7)

Guillemot, H. (2022, December 31). Climate models. In K. De Pryck (Ed.), A critical
assessment of the intergovernmental panel on climate change (1st ed., pp. 126–
136). Cambridge University Press. http://dx.doi.org/10.1017/9781009082099.0
18. (Cit. on p. 4)

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: A GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev., 40 (4), 195–206. https://d
oi.org/10.1145/1851275.1851207 (cit. on pp. 2, 7)

Han, T. D., & Abdelrahman, T. S. (2011). hiCUDA: High-level GPGPU programming.
IEEE Transactions on Parallel and Distributed Systems, 22 (1), 78–90. https://d
oi.org/10.1109/TPDS.2010.62 (cit. on p. 6)

Hissbach, A.-M., Dick, C., & Lawonn, K. (2022). An overview of techniques for egocen-
tric black hole visualization and their suitability for planetarium applications.
In J. Bender, M. Botsch, & D. A. Keim (Eds.), Vision, modeling, and visual-
ization. The Eurographics Association. https://doi.org/10.2312/vmv.20221207.
(Cit. on p. 7)

Huang, Q., Huang, Z., Werstein, P., & Purvis, M. (2008). GPU as a general purpose
computing resource. 2008 Ninth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, 151–158. https://doi.org/1
0.1109/PDCAT.2008.38 (cit. on p. 6)

Jin, Y., Fu, W., Kang, J., Guo, J., & Guo, J. (2020, January 16). Bayesian symbolic
regression. https://doi.org/10.48550/arXiv.1910.08892. (Cit. on p. 5)

Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming and Evolvable
Machines, 5 (3), 259–269. https://doi.org/10.1023/B:GENP.0000030195.77571
.f9 (cit. on p. 5)

Korns, M. F. (2011). Accuracy in symbolic regression. In R. Riolo, E. Vladislavleva, &
J. H. Moore (Eds.), Genetic programming theory and practice IX (pp. 129–151).
Springer. https://doi.org/10.1007/978-1-4614-1770-5_8. (Cit. on p. 5)

Köster, M., Groß, J., & Krüger, A. (2020a). Massively parallel rule-based interpreter
execution on GPUs using thread compaction. International Journal of Parallel

https://doi.org/10.1145/1090122.1090126
https://doi.org/10.1109/TEVC.2024.3404650
https://doi.org/10.1109/TEVC.2024.3404650
https://doi.org/10.1109/JPROC.2004.840491
https://doi.org/10.1109/JPROC.2004.840491
https://doi.org/10.1109/HPCA.2011.5749714
https://doi.org/10.1007/s11831-013-9082-8
http://dx.doi.org/10.1017/9781009082099.018
http://dx.doi.org/10.1017/9781009082099.018
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.2312/vmv.20221207
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.48550/arXiv.1910.08892
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1007/978-1-4614-1770-5_8

References 26

Programming, 48 (4), 675–691. https://doi.org/10.1007/s10766-020-00670-2
(cit. on p. 11)

Köster, M., Groß, J., & Krüger, A. (2020b). High-performance simulations on GPUs
using adaptive time steps. In M. Qiu (Ed.), Algorithms and architectures for
parallel processing (pp. 369–385). Springer International Publishing. https://do
i.org/10.1007/978-3-030-60245-1_26. (Cit. on p. 7)

Koza, J. R. (2010). Human-competitive results produced by genetic programming. Ge-
netic Programming and Evolvable Machines, 11 (3), 251–284. https://doi.org/1
0.1007/s10710-010-9112-3 (cit. on p. 5)

Koza, J. (1994). Genetic programming as a means for programming computers by nat-
ural selection. Statistics and Computing, 4 (2). https://doi.org/10.1007/BF001
75355 (cit. on pp. 4, 5)

Kronberger, G., Burlacu, B., Kommenda, M., Winkler, S. M., & Affenzeller, M. (2024,
July). Symbolic regression. Chapman; Hall/CRC. http://dx.doi.org/10.1201/97
81315166407. (Cit. on pp. 5, 6)

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. International Symposium on Code Generation and
Optimization, 2004. CGO 2004., 75–86. https://doi.org/10.1109/CGO.2004.12
81665 (cit. on p. 17)

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., & Dubey, P.
(2010). Debunking the 100x GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU. Proceedings of the 37th annual international sym-
posium on Computer architecture, 451–460. https://doi.org/10.1145/1815961.1
816021 (cit. on p. 7)

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., & Battaglia, P. (2022, February 4). Redis-
covering orbital mechanics with machine learning. https://doi.org/10.48550/ar
Xiv.2202.02306. (Cit. on p. 5)

Lin, W.-C., & McIntosh-Smith, S. (2021). Comparing julia to performance portable
parallel programming models for HPC. 2021 International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 94–105. https://doi.org/10.1109/PMBS54543.2021.000
16 (cit. on p. 7)

Martius, G., & Lampert, C. H. (2016). Extrapolation and learning equations [Version
Number: 1]. https://doi.org/10.48550/ARXIV.1610.02995. (Cit. on p. 5)

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction. 2008 IEEE International Symposium on Parallel and Distributed
Processing, 1–7. https://doi.org/10.1109/IPDPS.2008.4536351 (cit. on pp. 2, 7)

Pfahler, L., & Morik, K. (2020). Semantic search in millions of equations. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 135–143. https://doi.org/10.1145/3394486.3403056 (cit. on p. 4)

Sahoo, S. S., Lampert, C. H., & Martius, G. (2018). Learning equations for extrapolation
and control. https://doi.org/10.48550/ARXIV.1806.07259. (Cit. on p. 5)

Schuurman, D. C. (2013). Step-by-step design and simulation of a simple CPU archi-
tecture. Proceeding of the 44th ACM technical symposium on Computer science
education, 335–340. https://doi.org/10.1145/2445196.2445296 (cit. on p. 8)

https://doi.org/10.1007/s10766-020-00670-2
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
http://dx.doi.org/10.1201/9781315166407
http://dx.doi.org/10.1201/9781315166407
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.48550/arXiv.2202.02306
https://doi.org/10.48550/arXiv.2202.02306
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.48550/ARXIV.1610.02995
https://doi.org/10.1109/IPDPS.2008.4536351
https://doi.org/10.1145/3394486.3403056
https://doi.org/10.48550/ARXIV.1806.07259
https://doi.org/10.1145/2445196.2445296

References 27

Sun, F., Liu, Y., Wang, J.-X., & Sun, H. (2023, February 2). Symbolic physics learner:
Discovering governing equations via monte carlo tree search. https://doi.org/1
0.48550/arXiv.2205.13134. (Cit. on p. 5)

Tian, X., Saito, H., Girkar, M., Preis, S. V., Kozhukhov, S. S., Cherkasov, A. G., Nelson,
C., Panchenko, N., & Geva, R. (2012). Compiling c/c++ SIMD extensions for
function and loop vectorizaion on multicore-SIMD processors. 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 2349–2358. https://doi.org/10.1109/IPDPSW.2012.292 (cit. on p. 9)

Verbraeck, A., & Eisemann, E. (2021). Interactive black-hole visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 27 (2), 796–805. https://doi.o
rg/10.1109/TVCG.2020.3030452 (cit. on p. 7)

Werner, M., Junginger, A., Hennig, P., & Martius, G. (2021, May 13). Informed equation
learning. https://doi.org/10.48550/arXiv.2105.06331. (Cit. on p. 5)

Online sources

AMD. (2025a, February). Hardware features — HIP 6.3.42134 documentation. Re-
trieved March 15, 2025, from https ://rocm.docs .amd.com/projects/HIP/e
n/latest/reference/hardware_features.html. (Cit. on p. 12)

AMD. (2025b, February). HIP programming model — HIP 6.3.42134 documentation.
Retrieved March 9, 2025, from https://rocm.docs.amd.com/projects/HIP/en/l
atest/understand/programming_model.html. (Cit. on pp. 9, 10, 13)

GCC. (2025, January). GCC online documentation. Retrieved March 18, 2025, from ht
tps://gcc.gnu.org/onlinedocs/. (Cit. on p. 17)

Lindholm, T., Yellin, F., Bracha, G., Buckley, A., & Smith, D. (2025, February). The
java® virtual machine specification. Retrieved March 18, 2025, from https://do
cs.oracle.com/javase/specs/jvms/se24/html/. (Cit. on p. 17)

Nvidia. (2025a, March). CUDA c++ best practices guide 12.8 documentation. Retrieved
March 16, 2025, from https://docs.nvidia.com/cuda/cuda-c-best-practices-gui
de/index.html. (Cit. on p. 15)

Nvidia. (2025b, March). CUDA c++ programming guide. Retrieved November 22, 2024,
from https://docs.nvidia .com/cuda/cuda- c- programming- guide/. (Cit. on
pp. 7, 8, 14)

Nvidia. (2025c, March). Nsight compute — NsightCompute 12.8 documentation. Re-
trieved March 16, 2025, from https://docs.nvidia.com/nsight-compute/Nsight
Compute/index.html#occupancy-calculator. (Cit. on p. 15)

Nvidia. (2025d, March). Parallel thread execution ISA version 8.7. Retrieved March 15,
2025, from https://docs.nvidia.com/cuda/parallel-thread-execution/. (Cit. on
p. 16)

Sutter, H. (2004, December). The free lunch is over: A fundamental turn toward con-
currency in software. Retrieved March 13, 2025, from http://www.gotw.ca/pu
blications/concurrency-ddj.htm. (Cit. on p. 1)

https://doi.org/10.48550/arXiv.2205.13134
https://doi.org/10.48550/arXiv.2205.13134
https://doi.org/10.1109/IPDPSW.2012.292
https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.48550/arXiv.2105.06331
https://rocm.docs.amd.com/projects/HIP/en/latest/reference/hardware_features.html
https://rocm.docs.amd.com/projects/HIP/en/latest/reference/hardware_features.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://docs.oracle.com/javase/specs/jvms/se24/html/
https://docs.oracle.com/javase/specs/jvms/se24/html/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/cuda/parallel-thread-execution/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

28

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Research Question
	Thesis Structure

	Fundamentals and Related Work
	Equation learning
	GPGPU
	Programming GPUs
	PTX

	Compilers
	Transpilers
	Interpreters

	Concept and Design
	Requirements
	Interpreter
	Architecture
	Host
	Device

	Transpiler
	Architecture
	Host
	Device

	Implementation
	Technologies
	Interpreter
	Transpiler

	Evaluation
	Test environment
	Results
	Interpreter
	Transpiler
	Comparison

	Conclusion
	Future Work

	References
	Literature
	Online sources

