72 lines
2.7 KiB
Markdown
72 lines
2.7 KiB
Markdown
|
All Instructions: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#instructions
|
||
|
|
||
|
```
|
||
|
.version 7.1
|
||
|
|
||
|
.target sm_52
|
||
|
.address_size 64
|
||
|
|
||
|
// .globl VecAdd_kernel
|
||
|
|
||
|
.visible .entry VecAdd_kernel(
|
||
|
.param .u64 VecAdd_kernel_param_0,
|
||
|
.param .u64 VecAdd_kernel_param_1,
|
||
|
.param .u64 VecAdd_kernel_param_2,
|
||
|
.param .u32 VecAdd_kernel_param_3
|
||
|
)
|
||
|
|
||
|
{
|
||
|
.reg .pred %p<2>; -> predicate registers: p1 (needed for branching)
|
||
|
.reg .f32 %f<4>; -> float registers: f1 - f3
|
||
|
.reg .b32 %r<6>; -> 32 bits registers: r1 - r5 (bits are actual raw bits without a type)
|
||
|
.reg .b64 %rd<11>; -> 64 bits registers: rd1 - rd10
|
||
|
|
||
|
ld.param.u64 %rd1, [VecAdd_kernel_param_0]; -> rd1 = Data1
|
||
|
ld.param.u64 %rd2, [VecAdd_kernel_param_1]; -> rd2 = Data2
|
||
|
ld.param.u64 %rd3, [VecAdd_kernel_param_2]; -> rd3 = Result
|
||
|
ld.param.u32 %r2, [VecAdd_kernel_param_3]; -> r2 = N
|
||
|
|
||
|
mov.u32 %r3, %ntid.x;
|
||
|
mov.u32 %r4, %ctaid.x;
|
||
|
mov.u32 %r5, %tid.x;
|
||
|
|
||
|
mad.lo.s32 %r1, %r3, %r4, %r5; -> r3 * r4 -> extract lowest 32/2 bits -> add r5 -> r1 = lowest16Bits(r3*r4) + r5
|
||
|
|
||
|
setp.ge.s32 %p1, %r1, %r2; -> p1 = r1 >= r2 (setp would assign !p1 to second register if one was given)
|
||
|
|
||
|
(gate clause for the case when we start more threads than needed)
|
||
|
@%p1 bra \$L__BB0_2; -> if(p1) then {execute} else {branch to \$L__BB0_2}
|
||
|
|
||
|
cvta.to.global.u64 %rd4, %rd1; -> convert rd1 to global state space and write address to rd4 (I think)
|
||
|
|
||
|
mul.wide.s32 %rd5, %r1, 4; -> rd5 = r1 * 4
|
||
|
add.s64 %rd6, %rd4, %rd5; -> rd6 = rd4 + rd5
|
||
|
cvta.to.global.u64 %rd7, %rd2; -> same as above cvta
|
||
|
add.s64 %rd8, %rd7, %rd5; -> rd8 = rd7 + rd5
|
||
|
|
||
|
ld.global.f32 %f1, [%rd8]; -> f1 = rd8 (loading rd8 in a global f32 register)
|
||
|
ld.global.f32 %f2, [%rd6];" *
|
||
|
op *
|
||
|
" %f3, %f2, %f1; -> custom binary operator
|
||
|
cvta.to.global.u64 %rd9, %rd3; -> load local Result to global Result
|
||
|
|
||
|
(I think this aggregates the result because rd9 = rd3 = Result)
|
||
|
add.s64 %rd10, %rd9, %rd5; -> rd10 = rd9 + rd5
|
||
|
st.global.f32 [%rd10], %f3; -> rd10 = f3 (We are overwriting the previous result?)
|
||
|
|
||
|
\$L__BB0_2:
|
||
|
ret;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
The above probably calculates this expression: f3 = (x1 + ((r3 * r4 + r5) * 4) CUSTOM_OPERATOR (x2 + ((r3 * r4 + r5) * 4)))
|
||
|
|
||
|
|
||
|
# Plan
|
||
|
|
||
|
1. Generate PTX that only works with constant values and one expression
|
||
|
1. Add support for loading variables and parameters (get vars/params as parameters -> Result still only one number)
|
||
|
1. Add support for loading variables as matrix (params still only one value -> Result now a vector)
|
||
|
1. Add support for loading parameters as "sparse" matrix (Not much should change)
|
||
|
1. Add support for multiple expressions (Result is now a matrix)
|