added operators to the interpreter. storing result still missing
Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled
Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled
This commit is contained in:
@ -12,80 +12,94 @@ export interpret
|
||||
- parameters::Vector{Vector{Float64}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
|
||||
"
|
||||
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float64}, parameters::Vector{Vector{Float64}})
|
||||
# TODO:
|
||||
# create CUDA array for calculation results
|
||||
|
||||
variableRows = size(variables, 1)
|
||||
variableCols = size(variables, 2) # number of sets of variables to use for each expression
|
||||
cudaVars = CuArray(variables)
|
||||
cudaParams = create_cuda_array(parameters, NaN64) # column corresponds to data for one expression
|
||||
cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
||||
cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters)]) # put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
|
||||
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
|
||||
cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
cudaResults = CuArray{Float64}(undef, length(expressions), variableCols)
|
||||
|
||||
# Start kernel for each expression to ensure that no warp is working on different expressions
|
||||
for i in eachindex(expressions)
|
||||
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaStepsize, i)
|
||||
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
|
||||
config = launch_configuration(kernel.fun)
|
||||
threads = min(variableRows, config.threads)
|
||||
blocks = cld(variableRows, threads)
|
||||
threads = min(variableCols, config.threads)
|
||||
blocks = cld(variableCols, threads)
|
||||
|
||||
# TODO: Operation stack should be n-dims. nr. of Rows == length of this expression
|
||||
# nr. of columns == nr. of rows in Vars
|
||||
# This means every run with different variable set has its own stack
|
||||
# cudaOperationStack = CuArray{Float64}(undef, get_max_inner_length(expressions), length(expressions))
|
||||
|
||||
kernel(cudaExprs, cudaVars, cudaParams, cudaStepsize, i; threads, blocks)
|
||||
kernel(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i; threads, blocks)
|
||||
end
|
||||
end
|
||||
|
||||
const MAX_STACK_SIZE = 25 # The max number of values the expression can have. so Constant values, Variables and parameters
|
||||
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float64}, parameters::CuDeviceArray{Float64}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
|
||||
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float64}, parameters::CuDeviceArray{Float64}, results::CuDeviceArray{Float64}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
|
||||
firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
|
||||
lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
|
||||
firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive
|
||||
# lastParamIndex = firstParamIndex + stepsize[2] - 1 # Inclusive (probably not needed)
|
||||
operationStack = MVector{MAX_STACK_SIZE, Float64}(undef) # Vector{Float64}(undef, MAX_STACK_SIZE) # Try to get this to function with variable size too
|
||||
operationStackTop = 1
|
||||
|
||||
for i in reverse(firstExprIndex:lastExprIndex) # Calculate real "lastExprIndex"
|
||||
if expressions[i].Type != EMPTY
|
||||
lastExprIndex = i
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
for i in 1:5
|
||||
@cuprintln(variables[i])
|
||||
end
|
||||
variableCols = length(variables) / stepsize[3]
|
||||
firstVariableIndex = ((exprIndex - 1) * stepsize[3]) # Exclusive # TODO: This is obviously not right because each expression calculates the cudaResults for each variable set and therefore needs to incorporate the block index + stride. This is only done for testing
|
||||
firstResultsIndex = ((exprIndex - 1) * variableCols) + 1 # Inclusive # TODO: Same as above. to get the index of the variable set and therefore the index in the results matrix, use the block index and stride
|
||||
|
||||
operationStack = MVector{MAX_STACK_SIZE, Float64}(undef) # Try to get this to function with variable size too, to allow better memory usage
|
||||
operationStackTop = 0 # stores index of the last defined/valid value
|
||||
|
||||
# TODO: Look into Index and stride for the case that one thread handles multiple "variable sets"
|
||||
return
|
||||
|
||||
|
||||
for i in firstExprIndex:lastExprIndex
|
||||
if expressions[i].Type == EMPTY
|
||||
break
|
||||
elseif expressions[i].Type == INDEX
|
||||
# TODO: Load value from variables/parameters matrix and store for calculation
|
||||
val = expressions[i].Value
|
||||
operationStackTop += 1
|
||||
|
||||
if val > 0
|
||||
# TODO: access variables
|
||||
operationStack[operationStackTop] = variables[firstVariableIndex + val]
|
||||
else
|
||||
val = abs(val)
|
||||
operationStack[operationStackTop] = parameters[firstParamIndex + val]
|
||||
end
|
||||
operationStackTop += 1
|
||||
elseif expressions[i].Type == FLOAT64
|
||||
operationStack[operationStackTop] = expressions[i].Value
|
||||
operationStackTop += 1
|
||||
operationStack[operationStackTop] = reinterpret(Float64, expressions[i].Value)
|
||||
elseif expressions[i].Type == OPERATOR
|
||||
# TODO: Perform calculation of the stored values. Either 1 or 2, depending on the operator
|
||||
continue
|
||||
# TODO Maybe put this in seperate function
|
||||
type = expressions[i].Type
|
||||
if type == ADD
|
||||
operationStackTop -= 1
|
||||
operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1]
|
||||
elseif type == SUBTRACT
|
||||
operationStackTop -= 1
|
||||
operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1]
|
||||
elseif type == MULTIPLY
|
||||
operationStackTop -= 1
|
||||
operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1]
|
||||
elseif type == DIVIDE
|
||||
operationStackTop -= 1
|
||||
operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1]
|
||||
elseif type == POWER
|
||||
operationStackTop -= 1
|
||||
operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1]
|
||||
elseif type == ABS
|
||||
operationStack[operationStackTop] = abs(operationStack[operationStackTop])
|
||||
elseif type == LOG
|
||||
operationStack[operationStackTop] = log(operationStack[operationStackTop])
|
||||
elseif type == EXP
|
||||
operationStack[operationStackTop] = exp(operationStack[operationStackTop])
|
||||
elseif type == SQRT
|
||||
operationStack[operationStackTop] = sqrt(operationStack[operationStackTop])
|
||||
end
|
||||
else
|
||||
# TODO: handle this case. Should not happen but in case it does, it needs to do something
|
||||
continue
|
||||
operationStack[operationStackTop] = NaN
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
# TODO: Store computed value in output matrix
|
||||
# results[] = operationStack[operationStackTop]
|
||||
return
|
||||
end
|
||||
|
||||
@ -131,7 +145,6 @@ end
|
||||
|
||||
|
||||
|
||||
# @deprecate InterpretExplicit!(op::Operator, x, y) interpret_expression(expression, variables, parameters, exprIndex::Int)
|
||||
# Kernel
|
||||
function InterpretExplicit!(op::Operator, x, y)
|
||||
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
|
||||
|
@ -39,4 +39,8 @@ end
|
||||
result = Interpreter.convert_to_matrix(parameters, NaN64)
|
||||
|
||||
@test isequal(result, reference)
|
||||
end
|
||||
end
|
||||
|
||||
# TODO: Add several tests fo the mathematical expressions
|
||||
# One test for each operator. A second test if the operation order matters
|
||||
# And some more complicated expressions, with some only having variables, some only having parameters and some having both
|
Reference in New Issue
Block a user