concept and design: continued with architecture
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
This commit is contained in:
@ -25,7 +25,7 @@ Graphics cards (GPUs) are commonly used to increase the performance of many diff
|
||||
While in the early days of GPGPU programming a lot of research has been done to assess if this approach is feasible, it now seems obvious to use GPUs to accelerate algorithms. GPUs have been used early to speed up weather simulation models. \textcite{michalakes_gpu_2008} proposed a method for simulating weather with the Weather Research and Forecast (WRF) model on a GPU. With their approach, they reached a speed-up of 5 to 2 for the most compute intensive task, with little GPU optimisation effort. They also found that the GPU usage was low, meaning there are resources and potential for more detailed simulations. Generally, simulations are great candidates for using GPUs, as they can benefit heavily from a high degree of parallelism and data throughput. \textcite{koster_high-performance_2020} have developed a way of using adaptive time steps on the GPU to considerably improve the performance of numerical and discrete simulations. In addition to the performance gains they were able to retain the precision and constraint correctness of the simulation. Black hole simulations are crucial for science and education for a better understanding of our world. \textcite{verbraeck_interactive_2021} have shown that simulating complex Kerr (rotating) black holes can be done on consumer hardware in a few seconds. Schwarzschild black hole simulations can be performed in real-time with GPUs as described by \textcite{hissbach_overview_2022} which is especially helpful for educational scenarios. While both approaches do not have the same accuracy as detailed simulations on supercomputers, they show how a single GPU can yield similar accuracy at a fraction of the cost. Software network routing can also heavily benefit from GPU acceleration as shown by \textcite{han_packetshader_2010}, where they achieved a significantly higher throughput than with a CPU only implementation. Finite element structural analysis is an essential tool for many branches of engineering and can also heavily benefit from the usage of GPUs as demonstrated by \textcite{georgescu_gpu_2013}. Generating test data for DeepQ learning can also significantly benefit from using the GPU \parencite{koster_macsq_2022}. However, it also needs to be noted, that GPUs are not always better performing than CPUs as illustrated by \textcite{lee_debunking_2010}, so it is important to consider if it is worth using GPUs for specific tasks.
|
||||
|
||||
\subsection{Programming GPUs}
|
||||
The development process on a GPU is vastly different from a CPU. A CPU has tens or hundreds of complex cores with the AMD Epyc 9965\footnote{\url{https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html}} having a staggering $192$ cores and twice as many threads. To demonstrate the complexity of a simple one core 8-bit CPU \textcite{schuurman_step-by-step_2013} has written a development guide. He describes the different parts of one CPU core and how they interact. Modern CPUs are even more complex, with dedicated fast integer and floating-point arithmetic gates as well as logic gates, sophisticated branch prediction and much more. This makes a CPU perfect for handling complex control flows on a single program strand and on modern CPUs even multiple strands simultaneously \parencite{palacios_comparison_2011}. However, as seen in Section \ref{sec:gpgpu}, this often is not enough. On the other hand, a GPU contains thousands or even tens of thousands of cores. For example, the GeForce RTX 5090\footnote{\url{https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/}} contains a total of $21\,760$ CUDA cores. To achieve this enormous core count a single GPU core has to be much simpler than one CPU core. As described by \textcite{nvidia_cuda_2025} a GPU designates much more transistors towards floating-point computations. This results in less efficient integer arithmetic and control flow handling. There is also less Cache available per core and clock speeds are usually also much lower than those on a CPU. An overview of the differences of a CPU and a GPU architecture can be seen in Figure \ref{fig:cpu_vs_gpu}.
|
||||
The development process on a GPU is vastly different from a CPU. A CPU has tens or hundreds of complex cores with the AMD Epyc 9965\footnote{\url{https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html}} having $192$ cores and twice as many threads. To demonstrate the complexity of a simple one core 8-bit CPU \textcite{schuurman_step-by-step_2013} has written a development guide. He describes the different parts of one CPU core and how they interact. Modern CPUs are even more complex, with dedicated fast integer and floating-point arithmetic gates as well as logic gates, sophisticated branch prediction and much more. This makes a CPU perfect for handling complex control flows on a single program strand and on modern CPUs even multiple strands simultaneously \parencite{palacios_comparison_2011}. However, as seen in Section \ref{sec:gpgpu}, this often is not enough. On the other hand, a GPU contains thousands or even tens of thousands of cores. For example, the GeForce RTX 5090\footnote{\url{https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/}} contains a total of $21\,760$ CUDA cores. To achieve this enormous core count a single GPU core has to be much simpler than one CPU core. As described by \textcite{nvidia_cuda_2025} a GPU designates much more transistors towards floating-point computations. This results in less efficient integer arithmetic and control flow handling. There is also less Cache available per core and clock speeds are usually also much lower than those on a CPU. An overview of the differences of a CPU and a GPU architecture can be seen in Figure \ref{fig:cpu_vs_gpu}.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
@ -34,9 +34,10 @@ The development process on a GPU is vastly different from a CPU. A CPU has tens
|
||||
\label{fig:cpu_vs_gpu}
|
||||
\end{figure}
|
||||
|
||||
Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice when considering improving the performance of an algorithm. Because of the high number of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states that there is a single stream of instructions that is executed on a huge number of data streams. \textcite{franchetti_efficient_2005} and \textcite{tian_compiling_2012} describe ways of using SIMD instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7 respectively by using SIMD instructions instead of serial computations. Extending this to GPUs which are specifically built for SIMD/data parallel calculations shows why they are so powerful despite having less complex and slower cores than a CPU.
|
||||
Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice when considering improving the performance of an algorithm. Because of the high number of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states that there is a single stream of instructions that is executed on a huge number of data streams. \textcite{franchetti_efficient_2005} and \textcite{tian_compiling_2012} describe ways of using SIMD instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7 respectively by using SIMD instructions instead of serial computations. Extending this to GPUs which are specifically built for SIMD/data parallel calculations shows why they are so powerful despite having less complex and slower cores than a CPU. It is also important to note, that a GPU also always needs a CPU, as the CPU is responsible for sending the data to the GPU and starting the GPU program. In GPGPU programming, the CPU is usually called the host, while the GPU is usually called the device.
|
||||
|
||||
\subsubsection{Thread Hierarchy and Tuning}
|
||||
\label{sec:thread_hierarchy}
|
||||
The thousands of cores on a GPU, also called threads, are grouped together in several categories. This is the Thread hierarchy of GPUs. The developer can influence this grouping to a degree which allows them to tune their algorithm for optimal performance. In order to develop a well performing algorithm, it is necessary to know how this grouping works. Tuning the grouping is unique to each algorithm and also dependent on the GPU used, which means it is important to test a lot of different configurations to achieve the best possible result. This section aims at exploring the thread hierarchy and how it can be tuned to fit an algorithm.
|
||||
|
||||
At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is a hardware unit responsible for scheduling and executing threads and also contains the registers used by these threads. An SM is always executing a group of 32 threads simultaneously, and this group is called a warp. The number of threads that can be started is virtually unlimited. However, threads must be grouped in a block, with one block typically containing a maximum of $1024$ threads but is often configured to be less. Therefore, if more than $1024$ threads are required, more blocks must be created. Blocks can also be grouped into thread block clusters which is optional, but can be useful in certain scenarios. All thread blocks or thread block clusters are part of a grid, which manifests as a dispatch of the code run on the GPU, also called kernel \parencite{amd_hip_2025}. All threads in one block have access to some shared memory, which can be used for L1 caching or communication between threads. It is important that the blocks can be scheduled independently, with no dependencies between them. This allows the scheduler to schedule blocks and threads as efficiently as possible. All threads within a warp are guaranteed to be part of the same block, and are therefore executed simultaneously and can access the same memory addresses. Figure \ref{fig:thread_hierarchy} depicts how threads in a block are grouped into warps for execution and how they shared memory.
|
||||
@ -157,6 +158,7 @@ Done:
|
||||
\end{program}
|
||||
|
||||
\section{Compilers}
|
||||
\label{sec:compilers}
|
||||
Compilers are a necessary tool for many developers. If a developer wants to run their program it is very likely they need one. As best described by \textcite{aho_compilers_2006} in their dragon book, a compiler takes code written by a human in some source language and translates it into a destination language readable by a computer. This section briefly explores what compilers are and research done in this old field of computer science. Furthermore, the topics of transpilers and interpreters are explored, as their use-cases are very similar.
|
||||
|
||||
\textcite{aho_compilers_2006} and \textcite{cooper_engineering_2022} describe how a compiler can be developed, with the latter focusing on more modern approaches. They describe how a compiler consists of two parts, the analyser, also called frontend, and the synthesiser also called backend. The front end is responsible for ensuring syntactic and semantic correctness and converts the source code into an intermediate representation, an abstract syntax tree (AST), for the backend. Generating code in the target language, from the intermediate representation is the job of the backend. This target code can be assembly or anything else that is needed for a specific use-case. This intermediate representation also makes it simple to swap out frontends or backends. The Gnu Compiler Collection \textcite{gcc_gcc_2025} takes advantage of using different frontends to provide support for many languages including C, C++, Ada and more. Instead of compiling source code for specific machines directly, many languages compile code for virtual machines instead. Notable examples are the Java Virtual Machine (JVM) \parencite{lindholm_java_2025} and the low level virtual machine (LLVM) \parencite{lattner_llvm_2004}. Such virtual machines provide a bytecode which can be used as a target language for compilers. A huge benefit of such virtual machines is the ability for one program to be run on all physical machines the virtual machine exists for, without the developer needing to change that program \parencite{lindholm_java_2025}. Programs written for virtual machines are compiled into their respective bytecode. This bytecode can then be interpreted or compiled to physical machine code and then be run. According to the JVM specification \textcite{lindholm_java_2025} the Java bytecode is interpreted and also compiled with a just-in-time (JIT) compiler to increase the performance of code blocks that are often executed. On the other hand, the common language runtime (CLR)\footnote{\url{https://learn.microsoft.com/en-us/dotnet/standard/clr}}, the virtual machine for languages like C\#, never interprets the generated bytecode. As described by \textcite{microsoft_overview_2023} the CLR always compiles the bytecode to physical machine code using a JIT compiler before it is executed.
|
||||
|
Reference in New Issue
Block a user