Related Work: started with equation learning section
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
2025-02-26 13:34:46 +01:00
parent 52b5407b5c
commit 99ed6a1cca
3 changed files with 23 additions and 2 deletions

View File

@ -315,3 +315,19 @@ Publisher: Multidisciplinary Digital Publishing Institute},
keywords = {Compute Unify Device Architecture, Element Stiffness Matrice, Global Stiffness Matrix, Iterative Solver, Matrix Solver},
file = {Full Text PDF:C\:\\Users\\danwi\\Zotero\\storage\\352VGH3Y\\Georgescu et al. - 2013 - GPU Acceleration for FEM-Based Structural Analysis.pdf:application/pdf},
}
@article{brunton_discovering_2016,
title = {Discovering governing equations from data by sparse identification of nonlinear dynamical systems},
volume = {113},
url = {https://www.pnas.org/doi/abs/10.1073/pnas.1517384113},
doi = {10.1073/pnas.1517384113},
abstract = {Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.},
pages = {3932--3937},
number = {15},
journaltitle = {Proceedings of the National Academy of Sciences},
author = {Brunton, Steven L. and Proctor, Joshua L. and Kutz, J. Nathan},
urldate = {2025-02-26},
date = {2016-04-12},
note = {Publisher: Proceedings of the National Academy of Sciences},
file = {Full Text PDF:C\:\\Users\\danwi\\Zotero\\storage\\6R643NFZ\\Brunton et al. - 2016 - Discovering governing equations from data by sparse identification of nonlinear dynamical systems.pdf:application/pdf},
}