benchmarking: moved frontend calls and sending postfixExprs+vars outside to drastically reduce amount of calculations
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel
2025-05-17 18:32:04 +02:00
parent 88ee8d20bd
commit a5518dd63e
8 changed files with 79 additions and 63 deletions

View File

@ -22,36 +22,45 @@ export evaluate_gpu
#
# Evaluate Expressions on the GPU
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
function interpret_gpu(expressions::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(expressions) == axes(p)
variableCols = size(X, 2)
variableRows = size(X, 1)
results = Matrix{Float32}(undef, ncols, length(exprs))
# TODO: create CuArray for variables here already, as they never change
# could/should be done even before calling this, but I guess it would be diminishing returns
# TODO: test how this would impact performance, if it gets faster, adapt implementation section
# TODO: create CuArray for expressions here already. They also do not change over the course of parameter optimisation and therefore a lot of unnecessary calls to expr_to_postfix can be save (even though a cache is used, this should still be faster)
variables = CuArray(X)
exprs = Vector{ExpressionProcessing.PostfixType}(undef, length(expressions))
@inbounds Threads.@threads for i in eachindex(expressions)
exprs[i] = ExpressionProcessing.expr_to_postfix(expressions[i])
end
cudaExprs = Utils.create_cuda_array(exprs, ExpressionProcessing.ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression;
exprsLength = length(exprs)
exprsInnerLength = Utils.get_max_inner_length(exprs)
results = Matrix{Float32}(undef, variableCols, length(exprs))
for i in 1:repetitions # Simulate parameter tuning -> local search (X remains the same, p gets changed in small steps and must be performed sequentially, which it is with this impl)
results = Interpreter.interpret(exprs, X, p)
results = Interpreter.interpret(cudaExprs, exprsLength, exprsInnerLength, variables, variableCols, variableRows, p)
end
return results
end
# Convert Expressions to PTX Code and execute that instead
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
function evaluate_gpu(expressions::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(expressions) == axes(p)
variableCols = size(X, 2)
variableRows = size(X, 1)
variables = CuArray(X)
results = Matrix{Float32}(undef, ncols, length(exprs))
# TODO: create CuArray for variables here already, as they never change
# could/should be done even before calling this, but I guess it would be diminishing returns
# TODO: test how this would impact performance, if it gets faster, adapt implementation section
# TODO: create CuArray for expressions here already. They also do not change over the course of parameter optimisation and therefore a lot of unnecessary calls to expr_to_postfix can be save (even though a cache is used, this should still be faster)
exprs = Vector{ExpressionProcessing.PostfixType}(undef, length(expressions))
@inbounds Threads.@threads for i in eachindex(expressions)
exprs[i] = ExpressionProcessing.expr_to_postfix(expressions[i])
end
results = Matrix{Float32}(undef, variableCols, length(exprs))
for i in 1:repetitions # Simulate parameter tuning -> local search (X remains the same, p gets changed in small steps and must be performed sequentially, which it is with this impl)
results = Transpiler.evaluate(exprs, X, p)
results = Transpiler.evaluate(exprs, variables, variableCols, variableRows, p)
end
return results