benchmarking: moved frontend calls and sending postfixExprs+vars outside to drastically reduce amount of calculations
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel
2025-05-17 18:32:04 +02:00
parent 88ee8d20bd
commit a5518dd63e
8 changed files with 79 additions and 63 deletions

View File

@ -12,10 +12,7 @@ const Operand = Union{Float32, String} # Operand is either fixed value or regist
- kwparam ```frontendCache```: The cache that stores the (partial) results of the frontend, to speedup the pre-processing
- kwparam ```frontendCache```: The cache that stores the result of the transpilation. Useful for parameter optimisation, as the same expression gets executed multiple times
"
function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
varRows = size(variables, 1)
variableCols = size(variables, 2)
# kernels = Vector{CuFunction}(undef, length(expressions))
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVars::CuArray{Float32}, variableColumns::Integer, variableRows::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
# TODO: test this again with multiple threads. The first time I tried, I was using only one thread
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
@ -35,7 +32,7 @@ function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, paramet
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
# kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableCols, i-1) # i-1 because julia is 1-based but PTX needs 0-based indexing
# kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableColumns, i-1) # i-1 because julia is 1-based but PTX needs 0-based indexing
# linker = CuLink()
# add_data!(linker, "ExpressionProcessing", kernel)
@ -48,14 +45,13 @@ function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, paramet
# @lock cacheLock transpilerCache[expressions[i]] = kernels[i]
# end
cudaVars = CuArray(variables) # maybe put in shared memory (see PerformanceTests.jl for more info)
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info)
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
cudaResults = CuArray{Float32}(undef, variableColumns, length(expressions))
threads = min(variableCols, 256)
blocks = cld(variableCols, threads)
threads = min(variableColumns, 256)
blocks = cld(variableColumns, threads)
kernelName = "evaluate_gpu"
# TODO: Implement batching as a middleground between "transpile everything and then run" and "tranpile one run one" even though cudacall is async
@ -65,8 +61,8 @@ function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, paramet
# continue
# end
formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableCols, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(expressions[i], variableRows, Utils.get_max_inner_length(parameters), variableColumns, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing
linker = CuLink()
add_data!(linker, kernelName, kernel)