benchmarking: reverted previous; made interpreter use fast math
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel 2025-04-13 13:26:35 +02:00
parent 6d6874c7ba
commit a5c34a53b7
7 changed files with 32 additions and 26 deletions

View File

@ -1,6 +1,5 @@
module Interpreter module Interpreter
using CUDA using CUDA
using CUDA: i32
using StaticArrays using StaticArrays
using ..ExpressionProcessing using ..ExpressionProcessing
using ..Utils using ..Utils
@ -25,14 +24,14 @@ function interpret(expressions::Vector{Expr}, variables::Matrix{Float32}, parame
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel # put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
cudaStepsize::CuArray{Int32} = CuArray([Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression cudaStepsize = CuArray([Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions # each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(exprs)) cudaResults = CuArray{Float32}(undef, variableCols, length(exprs))
# Start kernel for each expression to ensure that no warp is working on different expressions # Start kernel for each expression to ensure that no warp is working on different expressions
@inbounds for i in eachindex(exprs) @inbounds for i in eachindex(exprs)
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, convert(Int32, i)) kernel = @cuda launch=false fastmath=true interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
# config = launch_configuration(kernel.fun) # config = launch_configuration(kernel.fun)
threads = min(variableCols, 128) threads = min(variableCols, 128)
blocks = cld(variableCols, threads) blocks = cld(variableCols, threads)
@ -45,8 +44,8 @@ end
#TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking #TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking
const MAX_STACK_SIZE = 25 # The depth of the stack to store the values and intermediate results const MAX_STACK_SIZE = 25 # The depth of the stack to store the values and intermediate results
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int32}, exprIndex::Int32) function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
varSetIndex = (blockIdx().x - 1i32) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based) varSetIndex = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based)
@inbounds variableCols = length(variables) / stepsize[2] @inbounds variableCols = length(variables) / stepsize[2]
if varSetIndex > variableCols if varSetIndex > variableCols
@ -55,19 +54,19 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
# firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive # firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
# lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive # lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
@inbounds firstParamIndex = ((exprIndex - 1i32) * stepsize[1]) # Exclusive @inbounds firstParamIndex = ((exprIndex - 1) * stepsize[1]) # Exclusive
operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage
operationStackTop = 0i32 # stores index of the last defined/valid value operationStackTop = 0 # stores index of the last defined/valid value
@inbounds firstVariableIndex = ((varSetIndex-1i32) * stepsize[2]) # Exclusive @inbounds firstVariableIndex = ((varSetIndex-1) * stepsize[2]) # Exclusive
@inbounds for expr in expressions @inbounds for expr in expressions
if expr.Type == EMPTY if expr.Type == EMPTY
break break
elseif expr.Type == INDEX elseif expr.Type == INDEX
val = expr.Value val = expr.Value
operationStackTop += 1i32 operationStackTop += 1
if val > 0 if val > 0
operationStack[operationStackTop] = variables[firstVariableIndex + val] operationStack[operationStackTop] = variables[firstVariableIndex + val]
@ -76,25 +75,25 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
operationStack[operationStackTop] = parameters[firstParamIndex + val] operationStack[operationStackTop] = parameters[firstParamIndex + val]
end end
elseif expr.Type == FLOAT32 elseif expr.Type == FLOAT32
operationStackTop += 1i32 operationStackTop += 1
operationStack[operationStackTop] = reinterpret(Float32, expr.Value) operationStack[operationStackTop] = reinterpret(Float32, expr.Value)
elseif expr.Type == OPERATOR elseif expr.Type == OPERATOR
type = reinterpret(Operator, expr.Value) type = reinterpret(Operator, expr.Value)
if type == ADD if type == ADD
operationStackTop -= 1i32 operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1i32] operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1]
elseif type == SUBTRACT elseif type == SUBTRACT
operationStackTop -= 1i32 operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1i32] operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1]
elseif type == MULTIPLY elseif type == MULTIPLY
operationStackTop -= 1i32 operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1i32] operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1]
elseif type == DIVIDE elseif type == DIVIDE
operationStackTop -= 1i32 operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1i32] operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1]
elseif type == POWER elseif type == POWER
operationStackTop -= 1i32 operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1i32] operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1]
elseif type == ABS elseif type == ABS
operationStack[operationStackTop] = abs(operationStack[operationStackTop]) operationStack[operationStackTop] = abs(operationStack[operationStackTop])
elseif type == LOG elseif type == LOG
@ -112,7 +111,7 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
# "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column) # "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column)
# "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row) # "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row)
resultIndex = convert(Int, (exprIndex - 1i32) * variableCols + varSetIndex) # Inclusive resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive
@inbounds results[resultIndex] = operationStack[operationStackTop] @inbounds results[resultIndex] = operationStack[operationStackTop]
return return

View File

@ -143,9 +143,10 @@ if compareWithCPU
println(gpuiVsGPUT_median) println(gpuiVsGPUT_median)
println(gpuiVsGPUT_std) println(gpuiVsGPUT_std)
BenchmarkTools.save("$BENCHMARKS_RESULTS_PATH/4-interpreter_using_int32.json", results) BenchmarkTools.save("$BENCHMARKS_RESULTS_PATH/5-interpreter_using_fastmath.json", results)
else else
resultsOld = BenchmarkTools.load("$BENCHMARKS_RESULTS_PATH/2-using_inbounds.json")[1] resultsOld = BenchmarkTools.load("$BENCHMARKS_RESULTS_PATH/2-using_inbounds.json")[1]
# resultsOld = BenchmarkTools.load("$BENCHMARKS_RESULTS_PATH/3-tuned-blocksize_I128_T96.json")[1]
medianGPUI_old = median(resultsOld["GPUI"]) medianGPUI_old = median(resultsOld["GPUI"])
stdGPUI_old = std(resultsOld["GPUI"]) stdGPUI_old = std(resultsOld["GPUI"])

View File

@ -26,5 +26,5 @@ end
@testset "Transpiler Tuning" begin @testset "Transpiler Tuning" begin
# CUDA.@profile evaluate_gpu(exprsGPU, X, p; repetitions=expr_reps) CUDA.@profile evaluate_gpu(exprsGPU, X, p; repetitions=expr_reps)
end end

File diff suppressed because one or more lines are too long

View File

@ -2,8 +2,11 @@
\label{cha:conclusion} \label{cha:conclusion}
Summarise the results Summarise the results
talk again how a typical input is often not complex enough (basically repeat that statement from comparison section in evaluation)
\section{Future Work} \section{Future Work}
talk about what can be improved talk about what can be improved
Transpiler: transpile expression directly from Julia AST -> would save time because no intermediate representation needs to be created (looses step and gains performance, but also makes transpiler itself more complex) Transpiler: transpile expression directly from Julia AST -> would save time because no intermediate representation needs to be created (looses step and gains performance, but also makes transpiler itself more complex)
CPU Interpreter: Probably more worth to dive into parallelising cpu interpreter itself (not really future work, as you wouldn't write a paper about that)

View File

@ -22,7 +22,7 @@ Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large 1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large
2.) Using @inbounds -> noticeable improvement in 2 out of 3 2.) Using @inbounds -> noticeable improvement in 2 out of 3
3.) Tuned blocksize with NSight compute -> slight improvement 3.) Tuned blocksize with NSight compute -> slight improvement
4.) used int32 everywhere to reduce register usage -> significant performance drop (probably because a lot more waiting time, or more type conversions happening on GPU? would need to look at PTX) 4.) used int32 everywhere to reduce register usage -> significant performance drop (probably because a lot more waiting time "latency hiding not working basically", or more type conversions happening on GPU? look at generated PTX code and use that as an argument to describe why it is slower)
\subsection{Transpiler} \subsection{Transpiler}
Results only for Transpiler (also contains final kernel configuration and probably quick overview/recap of the implementation used and described in Implementation section Results only for Transpiler (also contains final kernel configuration and probably quick overview/recap of the implementation used and described in Implementation section
@ -37,4 +37,6 @@ Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
4.) Only changed things on interpreter side 4.) Only changed things on interpreter side
\subsection{Comparison} \subsection{Comparison}
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU interpreter Comparison of Interpreter and Transpiler as well as Comparing the two with CPU interpreter
talk about that compute portion is just too little. Only more complex expressions with higher var set count benefit well (make one or two performance evaluations, with 10 larger expressions and at least 1k var sets and present that here as point for that statement)

Binary file not shown.