diff --git a/package/src/ExpressionExecutorCuda.jl b/package/src/ExpressionExecutorCuda.jl index 939cd0c..17471b6 100644 --- a/package/src/ExpressionExecutorCuda.jl +++ b/package/src/ExpressionExecutorCuda.jl @@ -61,14 +61,13 @@ function evaluate_gpu(expressions::Vector{Expr}, X::Matrix{Float32}, p::Vector{V @inbounds Threads.@threads for i in eachindex(expressions) ex = ExpressionProcessing.expr_to_postfix(expressions[i]) ptxKernels[i] = Transpiler.transpile(ex, variableSetSize, largestParameterSetSize, numVariableSets, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing - # compiledKernels[i] = Transpiler.CompileKernel(ptxKernel, kernelName) end - results = Matrix{Float32}(undef, numVariableSets, length(exprs)) + results = Matrix{Float32}(undef, numVariableSets, length(expressions)) for i in 1:repetitions # Simulate parameter tuning -> local search (X remains the same, p gets changed in small steps and must be performed sequentially, which it is with this impl) # evaluate # results = Transpiler.evaluate(exprs, variables, numVariableSets, variableSetSize, p) - results = Transpiler.evaluate(ptxKernels, variables, variableSetSize, p, kernelName) + results = Transpiler.evaluate(ptxKernels, variables, numVariableSets, p, kernelName) end return results diff --git a/package/src/Transpiler.jl b/package/src/Transpiler.jl index 101b698..abe7c77 100644 --- a/package/src/Transpiler.jl +++ b/package/src/Transpiler.jl @@ -33,20 +33,20 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVar end " -A simplified version of the evaluate function. It takes a list of already compiled kernels to be executed. This should yield better performance, where the same expressions should be evaluated multiple times i.e. for parameter optimisation. +A simplified version of the evaluate function. It takes a list of already transpiled kernels to be executed. This should yield better performance, where the same expressions should be evaluated multiple times i.e. for parameter optimisation. " function evaluate(kernels::Vector{String}, cudaVars::CuArray{Float32}, nrOfVariableSets::Integer, parameters::Vector{Vector{Float32}}, kernelName::String)::Matrix{Float32} cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info) # each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions - cudaResults = CuArray{Float32}(undef, nrOfVariableSets, length(expressions)) + cudaResults = CuArray{Float32}(undef, nrOfVariableSets, length(kernels)) threads = min(nrOfVariableSets, 256) blocks = cld(nrOfVariableSets, threads) @inbounds Threads.@threads for i in eachindex(kernels) - compiledKernel = CompileKernel(kernel[i], kernelName) + compiledKernel = CompileKernel(kernels[i], kernelName) cudacall(compiledKernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks) end