benchmarking: added gpu evaluators to performance testing. getting execution errors still
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
This commit is contained in:
parent
690ee33db1
commit
ad175abac0
|
@ -2,6 +2,7 @@ module ExpressionExecutorCuda
|
|||
include("Utils.jl")
|
||||
include("ExpressionProcessing.jl")
|
||||
include("Interpreter.jl")
|
||||
include("Transpiler.jl")
|
||||
|
||||
module CpuInterpreter
|
||||
include("Code.jl")
|
||||
|
@ -20,20 +21,31 @@ export test
|
|||
#
|
||||
|
||||
# Evaluate Expressions on the GPU
|
||||
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
|
||||
@assert axes(exprs) == axes(p)
|
||||
ncols = size(X, 2)
|
||||
|
||||
result = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
# interpret
|
||||
results = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
|
||||
for i in 1:repetitions # Simulate parameter tuning
|
||||
results = Interpreter.interpret(exprs, X, p)
|
||||
end
|
||||
|
||||
return results
|
||||
end
|
||||
|
||||
# Convert Expressions to PTX Code and execute that instead
|
||||
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
|
||||
@assert axes(exprs) == axes(p)
|
||||
ncols = size(X, 2)
|
||||
|
||||
result = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
results = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
|
||||
for i in 1:repetitions # Simulate parameter tuning
|
||||
results = Transpiler.evaluate(exprs, X, p)
|
||||
end
|
||||
|
||||
return results
|
||||
end
|
||||
|
||||
|
||||
|
|
|
@ -71,6 +71,10 @@ function get_operator(op::Symbol)::Operator
|
|||
return EXP
|
||||
elseif op == :sqrt
|
||||
return SQRT
|
||||
elseif op == :powabs
|
||||
return POWER # TODO: Fix this
|
||||
else
|
||||
throw("Operator unknown")
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -12,19 +12,25 @@ export interpret
|
|||
- variables::Matrix{Float32} : The variables to use. Each column is mapped to the variables x1..xn
|
||||
- parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
|
||||
"
|
||||
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
function interpret(expressions::Vector{Expr}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
|
||||
exprs = Vector{ExpressionProcessing.PostfixType}(undef, length(expressions))
|
||||
for i in eachindex(expressions)
|
||||
exprs[i] = ExpressionProcessing.expr_to_postfix(expressions[i])
|
||||
end
|
||||
|
||||
variableCols = size(variables, 2) # number of variable sets to use for each expression
|
||||
cudaVars = CuArray(variables)
|
||||
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
|
||||
cudaExprs = Utils.create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
||||
cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
||||
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
|
||||
cudaStepsize = CuArray([Utils.get_max_inner_length(expressions), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
||||
cudaStepsize = CuArray([Utils.get_max_inner_length(exprs), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
|
||||
cudaResults = CuArray{Float32}(undef, variableCols, length(exprs))
|
||||
|
||||
# Start kernel for each expression to ensure that no warp is working on different expressions
|
||||
for i in eachindex(expressions)
|
||||
for i in eachindex(exprs)
|
||||
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
|
||||
config = launch_configuration(kernel.fun)
|
||||
threads = min(variableCols, config.threads)
|
||||
|
|
|
@ -107,7 +107,7 @@ function get_cuda_header()::String
|
|||
return "
|
||||
.version 8.5
|
||||
.target sm_61
|
||||
.address_size 32
|
||||
.address_size 64
|
||||
"
|
||||
end
|
||||
|
||||
|
|
|
@ -21,8 +21,8 @@ parameters[2][1] = 5.0
|
|||
parameters[2][2] = 0.0
|
||||
|
||||
function testHelper(expression::Expr, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}}, expectedResult)
|
||||
postfix = Vector([expr_to_postfix(expression)])
|
||||
result = Interpreter.interpret(postfix, variables, parameters)
|
||||
exprs = Vector([expression])
|
||||
result = Interpreter.interpret(exprs, variables, parameters)
|
||||
|
||||
expectedResult32 = convert(Float32, expectedResult)
|
||||
@test isequal(result[1,1], expectedResult32)
|
||||
|
@ -127,8 +127,8 @@ end
|
|||
expr1 = :((x1 + 5) * p1 - 3 / abs(x2) + (2^4) - log(8))
|
||||
expr2 = :(1 + 5 * x1 - 10^2 + (p1 - p2) / 9 + exp(x2))
|
||||
|
||||
postfix = Vector([expr_to_postfix(expr1), expr_to_postfix(expr2)])
|
||||
result = Interpreter.interpret(postfix, var, param)
|
||||
exprs = Vector([expr1, expr2])
|
||||
result = Interpreter.interpret(exprs, var, param)
|
||||
|
||||
# var set 1
|
||||
@test isapprox(result[1,1], 37.32, atol=0.01) # expr1
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
using LinearAlgebra
|
||||
using BenchmarkTools
|
||||
using BenchmarkPlots, StatsPlots
|
||||
|
||||
using .Transpiler
|
||||
using .Interpreter
|
||||
|
@ -71,26 +70,40 @@ end
|
|||
|
||||
suite = BenchmarkGroup()
|
||||
suite["CPU"] = BenchmarkGroup(["CPUInterpreter"])
|
||||
# suite["GPUI"] = BenchmarkGroup(["GPUInterpreter"])
|
||||
# suite["GPUT"] = BenchmarkGroup(["GPUTranspiler"])
|
||||
suite["GPUI"] = BenchmarkGroup(["GPUInterpreter"])
|
||||
suite["GPUT"] = BenchmarkGroup(["GPUTranspiler"])
|
||||
varsets_small = 100
|
||||
varsets_medium = 1000
|
||||
varsets_large = 10000
|
||||
|
||||
X_small = randn(Float32, 100, 5)
|
||||
X_small = randn(Float32, varsets_small, 5)
|
||||
suite["CPU"]["small varset"] = @benchmarkable interpret_cpu(exprsCPU, X_small, p; repetitions=expr_reps)
|
||||
X_normal = randn(Float32, 1000, 5)
|
||||
suite["CPU"]["normal varset"] = @benchmarkable interpret_cpu(exprsCPU, X_normal, p; repetitions=expr_reps)
|
||||
X_large = randn(Float32, 10000, 5)
|
||||
X_medium = randn(Float32, varsets_medium, 5)
|
||||
suite["CPU"]["medium varset"] = @benchmarkable interpret_cpu(exprsCPU, X_medium, p; repetitions=expr_reps)
|
||||
X_large = randn(Float32, varsets_large, 5)
|
||||
suite["CPU"]["large varset"] = @benchmarkable interpret_cpu(exprsCPU, X_large, p; repetitions=expr_reps)
|
||||
|
||||
# tune!(suite)
|
||||
X_small_GPU = randn(Float32, 5, varsets_small)
|
||||
suite["GPUI"]["small varset"] = @benchmarkable interpret_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["small varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
|
||||
|
||||
# BenchmarkTools.save("params.json", params(suite))
|
||||
loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
|
||||
X_medium_GPU = randn(Float32, 5, varsets_medium)
|
||||
suite["GPUI"]["medium varset"] = @benchmarkable interpret_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["medium varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
|
||||
|
||||
results = run(suite, verbose=true, seconds=180)
|
||||
X_large_GPU = randn(Float32, 5, varsets_large)
|
||||
suite["GPUI"]["large varset"] = @benchmarkable interpret_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["large varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
|
||||
|
||||
tune!(suite)
|
||||
|
||||
BenchmarkTools.save("params.json", params(suite))
|
||||
# loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
|
||||
|
||||
# results = run(suite, verbose=true, seconds=180)
|
||||
# results2 = run(suite, verbose=true, seconds=180)
|
||||
|
||||
medianCPU = median(results["CPU"])
|
||||
# medianCPU2 = median(results2["CPU"])
|
||||
# medianCPU = median(results["CPU"])
|
||||
# medianInterpreter = median(results["GPUI"])
|
||||
# medianTranspiler = median(results["GPUT"])
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user