benchmarking: added gpu evaluators to performance testing. getting execution errors still
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel 2025-03-29 13:35:59 +01:00
parent 690ee33db1
commit ad175abac0
6 changed files with 63 additions and 28 deletions

View File

@ -2,6 +2,7 @@ module ExpressionExecutorCuda
include("Utils.jl")
include("ExpressionProcessing.jl")
include("Interpreter.jl")
include("Transpiler.jl")
module CpuInterpreter
include("Code.jl")
@ -20,20 +21,31 @@ export test
#
# Evaluate Expressions on the GPU
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
result = Matrix{Float32}(undef, ncols, length(exprs))
# interpret
results = Matrix{Float32}(undef, ncols, length(exprs))
for i in 1:repetitions # Simulate parameter tuning
results = Interpreter.interpret(exprs, X, p)
end
return results
end
# Convert Expressions to PTX Code and execute that instead
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}}; repetitions=1)::Matrix{Float32}
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
result = Matrix{Float32}(undef, ncols, length(exprs))
results = Matrix{Float32}(undef, ncols, length(exprs))
for i in 1:repetitions # Simulate parameter tuning
results = Transpiler.evaluate(exprs, X, p)
end
return results
end

View File

@ -71,6 +71,10 @@ function get_operator(op::Symbol)::Operator
return EXP
elseif op == :sqrt
return SQRT
elseif op == :powabs
return POWER # TODO: Fix this
else
throw("Operator unknown")
end
end

View File

@ -12,19 +12,25 @@ export interpret
- variables::Matrix{Float32} : The variables to use. Each column is mapped to the variables x1..xn
- parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
"
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
function interpret(expressions::Vector{Expr}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
exprs = Vector{ExpressionProcessing.PostfixType}(undef, length(expressions))
for i in eachindex(expressions)
exprs[i] = ExpressionProcessing.expr_to_postfix(expressions[i])
end
variableCols = size(variables, 2) # number of variable sets to use for each expression
cudaVars = CuArray(variables)
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
cudaExprs = Utils.create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
cudaStepsize = CuArray([Utils.get_max_inner_length(expressions), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
cudaStepsize = CuArray([Utils.get_max_inner_length(exprs), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
cudaResults = CuArray{Float32}(undef, variableCols, length(exprs))
# Start kernel for each expression to ensure that no warp is working on different expressions
for i in eachindex(expressions)
for i in eachindex(exprs)
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
config = launch_configuration(kernel.fun)
threads = min(variableCols, config.threads)

View File

@ -107,7 +107,7 @@ function get_cuda_header()::String
return "
.version 8.5
.target sm_61
.address_size 32
.address_size 64
"
end

View File

@ -21,8 +21,8 @@ parameters[2][1] = 5.0
parameters[2][2] = 0.0
function testHelper(expression::Expr, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}}, expectedResult)
postfix = Vector([expr_to_postfix(expression)])
result = Interpreter.interpret(postfix, variables, parameters)
exprs = Vector([expression])
result = Interpreter.interpret(exprs, variables, parameters)
expectedResult32 = convert(Float32, expectedResult)
@test isequal(result[1,1], expectedResult32)
@ -127,8 +127,8 @@ end
expr1 = :((x1 + 5) * p1 - 3 / abs(x2) + (2^4) - log(8))
expr2 = :(1 + 5 * x1 - 10^2 + (p1 - p2) / 9 + exp(x2))
postfix = Vector([expr_to_postfix(expr1), expr_to_postfix(expr2)])
result = Interpreter.interpret(postfix, var, param)
exprs = Vector([expr1, expr2])
result = Interpreter.interpret(exprs, var, param)
# var set 1
@test isapprox(result[1,1], 37.32, atol=0.01) # expr1

View File

@ -1,6 +1,5 @@
using LinearAlgebra
using BenchmarkTools
using BenchmarkPlots, StatsPlots
using .Transpiler
using .Interpreter
@ -71,26 +70,40 @@ end
suite = BenchmarkGroup()
suite["CPU"] = BenchmarkGroup(["CPUInterpreter"])
# suite["GPUI"] = BenchmarkGroup(["GPUInterpreter"])
# suite["GPUT"] = BenchmarkGroup(["GPUTranspiler"])
suite["GPUI"] = BenchmarkGroup(["GPUInterpreter"])
suite["GPUT"] = BenchmarkGroup(["GPUTranspiler"])
varsets_small = 100
varsets_medium = 1000
varsets_large = 10000
X_small = randn(Float32, 100, 5)
X_small = randn(Float32, varsets_small, 5)
suite["CPU"]["small varset"] = @benchmarkable interpret_cpu(exprsCPU, X_small, p; repetitions=expr_reps)
X_normal = randn(Float32, 1000, 5)
suite["CPU"]["normal varset"] = @benchmarkable interpret_cpu(exprsCPU, X_normal, p; repetitions=expr_reps)
X_large = randn(Float32, 10000, 5)
X_medium = randn(Float32, varsets_medium, 5)
suite["CPU"]["medium varset"] = @benchmarkable interpret_cpu(exprsCPU, X_medium, p; repetitions=expr_reps)
X_large = randn(Float32, varsets_large, 5)
suite["CPU"]["large varset"] = @benchmarkable interpret_cpu(exprsCPU, X_large, p; repetitions=expr_reps)
# tune!(suite)
X_small_GPU = randn(Float32, 5, varsets_small)
suite["GPUI"]["small varset"] = @benchmarkable interpret_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
suite["GPUT"]["small varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
# BenchmarkTools.save("params.json", params(suite))
loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
X_medium_GPU = randn(Float32, 5, varsets_medium)
suite["GPUI"]["medium varset"] = @benchmarkable interpret_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
suite["GPUT"]["medium varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
results = run(suite, verbose=true, seconds=180)
X_large_GPU = randn(Float32, 5, varsets_large)
suite["GPUI"]["large varset"] = @benchmarkable interpret_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
suite["GPUT"]["large varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
tune!(suite)
BenchmarkTools.save("params.json", params(suite))
# loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
# results = run(suite, verbose=true, seconds=180)
# results2 = run(suite, verbose=true, seconds=180)
medianCPU = median(results["CPU"])
# medianCPU2 = median(results2["CPU"])
# medianCPU = median(results["CPU"])
# medianInterpreter = median(results["GPUI"])
# medianTranspiler = median(results["GPUT"])