code: started finalising transpilation process and preparing for performance testing and tuning
Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled

This commit is contained in:
2025-03-23 13:38:22 +01:00
parent db02e9f90f
commit baa37ea183
11 changed files with 149 additions and 60 deletions

View File

@ -1,6 +1,6 @@
name = "ExpressionExecutorCuda"
uuid = "5b8ee377-1e19-4ba5-a85c-78c7d1694bfe"
authors = ["Daniel Wiplinger"]
authors = ["Daniel Roth"]
version = "1.0.0-DEV"
[deps]

View File

@ -1,4 +1,5 @@
module ExpressionExecutorCuda
include("Utils.jl")
include("ExpressionProcessing.jl")
include("Interpreter.jl")
@ -13,18 +14,26 @@ export test
# Some assertions:
# Variables and parameters start their naming with "1" meaning the first variable/parameter has to be "x1/p1" and not "x0/p0"
# Matrix X is column major
# each index i in exprs has to have the matching values in the column i in Matrix X so that X[:,i] contains the values for expr[i]. The same goes for p
# This assertion is made, because in julia, the first index doesn't have to be 1
#
# Evaluate Expressions on the GPU
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
exprsPostfix = ExpressionProcessing.expr_to_postfix(exprs[1])
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
result = Matrix{Float32}(undef, ncols, length(exprs))
# interpret
end
# Convert Expressions to PTX Code and execute that instead
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
# Look into this to maybe speed up PTX generation: https://cuda.juliagpu.org/stable/tutorials/introduction/#Parallelization-on-the-CPU
@assert axes(exprs) == axes(p)
ncols = size(X, 2)
result = Matrix{Float32}(undef, ncols, length(exprs))
end

View File

@ -2,6 +2,7 @@ module Interpreter
using CUDA
using StaticArrays
using ..ExpressionProcessing
using ..Utils
export interpret
@ -14,10 +15,10 @@ export interpret
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
variableCols = size(variables, 2) # number of variable sets to use for each expression
cudaVars = CuArray(variables)
cudaParams = create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
cudaExprs = Utils.create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
cudaStepsize = CuArray([Utils.get_max_inner_length(expressions), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
@ -108,44 +109,4 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
return
end
"Retrieves the number of entries for the largest inner vector"
function get_max_inner_length(vec::Vector{Vector{T}})::Int where T
maxLength = 0
@inbounds for i in eachindex(vec)
if length(vec[i]) > maxLength
maxLength = length(vec[i])
end
end
return maxLength
end
"Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```"
function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T
dataCols = get_max_inner_length(data)
dataRows = length(data)
dataMat = convert_to_matrix(data, invalidElement)
cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions
copyto!(cudaArr, dataMat)
return cudaArr
end
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
All entries that cannot be filled have ```invalidElement``` as their value
"
function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T
vecCols = get_max_inner_length(vec)
vecRows = length(vec)
vecMat = fill(invalidElement, vecCols, vecRows)
for i in eachindex(vec)
vecMat[:,i] = copyto!(vecMat[:,i], vec[i])
end
return vecMat
end
end

View File

@ -1,6 +1,7 @@
module Transpiler
using CUDA
using ..ExpressionProcessing
using ..Utils
# Number of threads per block/SM + max number of registers
# https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications
@ -25,16 +26,57 @@ using ..ExpressionProcessing
const Operand = Union{Float32, String} # Operand is either fixed value or register
function evaluate(expression::ExpressionProcessing.PostfixType, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
# TODO: think of how to do this. Probably get all expressions. Transpile them in parallel and then execute the generatd code.
cudaVars = CuArray(variables)
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
varRows = size(variables, 1)
kernels = Vector{CuFunction}(undef, length(expressions))
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
# Threads.@threads for i in eachindex(expressions)
# kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
#kernel = transpile(expression, )
# execute kernel.
# linker = CuLink()
# add_data!(linker, "ExpressionProcessing", kernel)
# image = complete(linker)
# mod = CuModule(image)
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
# end
for i in eachindex(expressions)
kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
linker = CuLink()
add_data!(linker, "ExpressionProcessing", kernel)
image = complete(linker)
mod = CuModule(image)
kernels[i] = CuFunction(mod, "ExpressionProcessing")
end
cudaVars = CuArray(variables) # maybe put in shared memory (see runtests.jl for more info)
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see runtests.jl for more info)
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
# execute each kernel (also try doing this with Threads.@threads. Since we can have multiple grids, this might improve performance)
variableCols = size(variables, 2)
for i in eachindex(kernels)
config = launch_configuration(kernels[i])
threads = min(variableCols, config.threads)
blocks = cld(variableCols, threads)
cudacall(kernels[i], Tuple{CuPtr{Cfloat},CuPtr{Cfloat},CuPtr{Cfloat}}, cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
end
end
# To increase performance, it would probably be best for all helper functions to return their IO Buffer and not a string
# seekstart(buf1); write(buf2, buf1)
"
- param ```varSetSize```: The size of a variable set. Equal to number of rows of variable matrix (in a column major matrix)
- param ```paramSetSize```: The size of the longest parameter set. As it has to be stored in a column major matrix, the nr of rows is dependent oon the longest parameter set
"
function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Integer, paramSetSize::Integer)::String
exitJumpLocationMarker = "\$L__BB0_2"
ptxBuffer = IOBuffer()
@ -59,7 +101,6 @@ function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Int
println(ptxBuffer, "}")
generatedCode = String(take!(ptxBuffer))
println(generatedCode)
return generatedCode
end
@ -124,6 +165,9 @@ function get_guard_clause(exitJumpLocation::String, nrOfVarSetsRegister::String)
return (String(take!(guardBuffer)), globalThreadId)
end
"
- param ```parametersSetSize```: Size of the largest parameter set
"
function generate_calculation_code(expression::ExpressionProcessing.PostfixType, variablesReg::String, variablesSetSize::Integer,
parametersReg::String, parametersSetSize::Integer, threadIdReg::String)::String
codeBuffer = IOBuffer()
@ -174,7 +218,7 @@ end
- param ```loadLocation```: The location from where to load the value
- param ```valueIndex```: 0-based index of the value in the variable set/parameter set
- param ```setIndexReg```: 0-based index of the set. Needed to calculate the actual index from the ```valueIndex```. Is equal to the global threadId
- param ```setSize```: The size of one set. Needed to calculate the actual index from the ```valueIndex```
- param ```setSize```: The size of one set. Needed to calculate the actual index from the ```valueIndex```. Total number of elements in the set (length(set))
"
function load_into_register(register::String, loadLocation::String, valueIndex::Integer, setIndexReg::String, setSize::Integer)::String
# loadLocation + startIndex + valueIndex * bytes (4 in our case)

42
package/src/Utils.jl Normal file
View File

@ -0,0 +1,42 @@
module Utils
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
All entries that cannot be filled have ```invalidElement``` as their value
"
function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T
vecCols = get_max_inner_length(vec)
vecRows = length(vec)
vecMat = fill(invalidElement, vecCols, vecRows)
for i in eachindex(vec)
vecMat[:,i] = copyto!(vecMat[:,i], vec[i])
end
return vecMat
end
"Retrieves the number of entries for the largest inner vector"
function get_max_inner_length(vec::Vector{Vector{T}})::Int where T
maxLength = 0
@inbounds for i in eachindex(vec)
if length(vec[i]) > maxLength
maxLength = length(vec[i])
end
end
return maxLength
end
"Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```"
function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T
dataCols = Utils.get_max_inner_length(data)
dataRows = length(data)
dataMat = Utils.convert_to_matrix(data, invalidElement)
cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions
copyto!(cudaArr, dataMat)
return cudaArr
end
end

View File

@ -1,6 +1,7 @@
using CUDA
using .ExpressionProcessing
using .Interpreter
using .Utils
expressions = Vector{Expr}(undef, 2)
variables = Matrix{Float32}(undef, 2,2)
@ -35,7 +36,7 @@ end
reference[2,2] = 0.0
# reference = Matrix([5.0, NaN],
# [5.0, 0.0])
result = Interpreter.convert_to_matrix(parameters, NaN32)
result = Utils.convert_to_matrix(parameters, NaN32)
@test isequal(result, reference)
end

View File

@ -28,6 +28,7 @@ parameters[2][2] = 0.0
# generatedCode = Transpiler.transpile(postfixExpr)
generatedCode = Transpiler.transpile(postfixExprs[3], 2, 3) # TEMP
# println(generatedCode)
# CUDA.@sync interpret(postfixExprs, variables, parameters)
# This is just here for testing. This will be called inside the execute method in the Transpiler module
@ -40,4 +41,12 @@ parameters[2][2] = 0.0
func = CuFunction(mod, "ExpressionProcessing")
end
@testset "Test transpiler evaluation" begin
postfixExprs = Vector{ExpressionProcessing.PostfixType}()
push!(postfixExprs, expr_to_postfix(expressions[1]))
push!(postfixExprs, expr_to_postfix(expressions[2]))
@time Transpiler.evaluate(postfixExprs, variables, parameters)
end
#TODO: test performance of transpiler PTX generation when doing "return String(take!(buffer))" vs "return take!(buffer)"

View File

@ -2,17 +2,33 @@ using ExpressionExecutorCuda
using Test
const baseFolder = dirname(dirname(pathof(ExpressionExecutorCuda)))
include(joinpath(baseFolder, "src", "Utils.jl"))
include(joinpath(baseFolder, "src", "ExpressionProcessing.jl"))
include(joinpath(baseFolder, "src", "Interpreter.jl"))
include(joinpath(baseFolder, "src", "Transpiler.jl"))
@testset "ExpressionExecutorCuda.jl" begin
include("ExpressionProcessingTests.jl")
include("InterpreterTests.jl")
# include("ExpressionProcessingTests.jl")
# include("InterpreterTests.jl")
include("TranspilerTests.jl")
end
@testset "CPU Interpreter" begin
include("CpuInterpreterTests.jl")
#@testset "CPU Interpreter" begin
# include("CpuInterpreterTests.jl")
#end
@testset "Performance tests" begin
# TODO: make performance tests
# Put data in shared memory:
# https://cuda.juliagpu.org/v2.6/api/kernel/#Shared-memory
# Make array const:
# https://cuda.juliagpu.org/v2.6/api/kernel/#Device-arrays
# Memory management like in C++ might help with performance improvements
# https://cuda.juliagpu.org/v2.6/lib/driver/#Memory-Management
end