code: started finalising transpilation process and preparing for performance testing and tuning
Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled
Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
module ExpressionExecutorCuda
|
||||
include("Utils.jl")
|
||||
include("ExpressionProcessing.jl")
|
||||
include("Interpreter.jl")
|
||||
|
||||
@ -13,18 +14,26 @@ export test
|
||||
|
||||
# Some assertions:
|
||||
# Variables and parameters start their naming with "1" meaning the first variable/parameter has to be "x1/p1" and not "x0/p0"
|
||||
# Matrix X is column major
|
||||
# each index i in exprs has to have the matching values in the column i in Matrix X so that X[:,i] contains the values for expr[i]. The same goes for p
|
||||
# This assertion is made, because in julia, the first index doesn't have to be 1
|
||||
#
|
||||
|
||||
# Evaluate Expressions on the GPU
|
||||
function interpret_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
exprsPostfix = ExpressionProcessing.expr_to_postfix(exprs[1])
|
||||
@assert axes(exprs) == axes(p)
|
||||
ncols = size(X, 2)
|
||||
|
||||
result = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
# interpret
|
||||
end
|
||||
|
||||
# Convert Expressions to PTX Code and execute that instead
|
||||
function evaluate_gpu(exprs::Vector{Expr}, X::Matrix{Float32}, p::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
# Look into this to maybe speed up PTX generation: https://cuda.juliagpu.org/stable/tutorials/introduction/#Parallelization-on-the-CPU
|
||||
@assert axes(exprs) == axes(p)
|
||||
ncols = size(X, 2)
|
||||
|
||||
result = Matrix{Float32}(undef, ncols, length(exprs))
|
||||
end
|
||||
|
||||
|
||||
|
@ -2,6 +2,7 @@ module Interpreter
|
||||
using CUDA
|
||||
using StaticArrays
|
||||
using ..ExpressionProcessing
|
||||
using ..Utils
|
||||
|
||||
export interpret
|
||||
|
||||
@ -14,10 +15,10 @@ export interpret
|
||||
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
variableCols = size(variables, 2) # number of variable sets to use for each expression
|
||||
cudaVars = CuArray(variables)
|
||||
cudaParams = create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
|
||||
cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
||||
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
|
||||
cudaExprs = Utils.create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
||||
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
|
||||
cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
||||
cudaStepsize = CuArray([Utils.get_max_inner_length(expressions), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
|
||||
@ -108,44 +109,4 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
"Retrieves the number of entries for the largest inner vector"
|
||||
function get_max_inner_length(vec::Vector{Vector{T}})::Int where T
|
||||
maxLength = 0
|
||||
@inbounds for i in eachindex(vec)
|
||||
if length(vec[i]) > maxLength
|
||||
maxLength = length(vec[i])
|
||||
end
|
||||
end
|
||||
|
||||
return maxLength
|
||||
end
|
||||
|
||||
"Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```"
|
||||
function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T
|
||||
dataCols = get_max_inner_length(data)
|
||||
dataRows = length(data)
|
||||
dataMat = convert_to_matrix(data, invalidElement)
|
||||
cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions
|
||||
copyto!(cudaArr, dataMat)
|
||||
|
||||
return cudaArr
|
||||
end
|
||||
|
||||
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
|
||||
|
||||
All entries that cannot be filled have ```invalidElement``` as their value
|
||||
"
|
||||
function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T
|
||||
vecCols = get_max_inner_length(vec)
|
||||
vecRows = length(vec)
|
||||
vecMat = fill(invalidElement, vecCols, vecRows)
|
||||
|
||||
for i in eachindex(vec)
|
||||
vecMat[:,i] = copyto!(vecMat[:,i], vec[i])
|
||||
end
|
||||
|
||||
return vecMat
|
||||
end
|
||||
|
||||
end
|
@ -1,6 +1,7 @@
|
||||
module Transpiler
|
||||
using CUDA
|
||||
using ..ExpressionProcessing
|
||||
using ..Utils
|
||||
|
||||
# Number of threads per block/SM + max number of registers
|
||||
# https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications
|
||||
@ -25,16 +26,57 @@ using ..ExpressionProcessing
|
||||
|
||||
const Operand = Union{Float32, String} # Operand is either fixed value or register
|
||||
|
||||
function evaluate(expression::ExpressionProcessing.PostfixType, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
|
||||
# TODO: think of how to do this. Probably get all expressions. Transpile them in parallel and then execute the generatd code.
|
||||
cudaVars = CuArray(variables)
|
||||
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
|
||||
varRows = size(variables, 1)
|
||||
kernels = Vector{CuFunction}(undef, length(expressions))
|
||||
|
||||
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
|
||||
# Threads.@threads for i in eachindex(expressions)
|
||||
# kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
|
||||
|
||||
#kernel = transpile(expression, )
|
||||
# execute kernel.
|
||||
# linker = CuLink()
|
||||
# add_data!(linker, "ExpressionProcessing", kernel)
|
||||
|
||||
# image = complete(linker)
|
||||
|
||||
# mod = CuModule(image)
|
||||
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
|
||||
# end
|
||||
for i in eachindex(expressions)
|
||||
kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
|
||||
|
||||
linker = CuLink()
|
||||
add_data!(linker, "ExpressionProcessing", kernel)
|
||||
|
||||
image = complete(linker)
|
||||
|
||||
mod = CuModule(image)
|
||||
kernels[i] = CuFunction(mod, "ExpressionProcessing")
|
||||
end
|
||||
|
||||
cudaVars = CuArray(variables) # maybe put in shared memory (see runtests.jl for more info)
|
||||
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see runtests.jl for more info)
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
|
||||
|
||||
# execute each kernel (also try doing this with Threads.@threads. Since we can have multiple grids, this might improve performance)
|
||||
variableCols = size(variables, 2)
|
||||
for i in eachindex(kernels)
|
||||
config = launch_configuration(kernels[i])
|
||||
threads = min(variableCols, config.threads)
|
||||
blocks = cld(variableCols, threads)
|
||||
|
||||
cudacall(kernels[i], Tuple{CuPtr{Cfloat},CuPtr{Cfloat},CuPtr{Cfloat}}, cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
|
||||
end
|
||||
end
|
||||
|
||||
# To increase performance, it would probably be best for all helper functions to return their IO Buffer and not a string
|
||||
# seekstart(buf1); write(buf2, buf1)
|
||||
"
|
||||
- param ```varSetSize```: The size of a variable set. Equal to number of rows of variable matrix (in a column major matrix)
|
||||
- param ```paramSetSize```: The size of the longest parameter set. As it has to be stored in a column major matrix, the nr of rows is dependent oon the longest parameter set
|
||||
"
|
||||
function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Integer, paramSetSize::Integer)::String
|
||||
exitJumpLocationMarker = "\$L__BB0_2"
|
||||
ptxBuffer = IOBuffer()
|
||||
@ -59,7 +101,6 @@ function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Int
|
||||
println(ptxBuffer, "}")
|
||||
|
||||
generatedCode = String(take!(ptxBuffer))
|
||||
println(generatedCode)
|
||||
return generatedCode
|
||||
end
|
||||
|
||||
@ -124,6 +165,9 @@ function get_guard_clause(exitJumpLocation::String, nrOfVarSetsRegister::String)
|
||||
return (String(take!(guardBuffer)), globalThreadId)
|
||||
end
|
||||
|
||||
"
|
||||
- param ```parametersSetSize```: Size of the largest parameter set
|
||||
"
|
||||
function generate_calculation_code(expression::ExpressionProcessing.PostfixType, variablesReg::String, variablesSetSize::Integer,
|
||||
parametersReg::String, parametersSetSize::Integer, threadIdReg::String)::String
|
||||
codeBuffer = IOBuffer()
|
||||
@ -174,7 +218,7 @@ end
|
||||
- param ```loadLocation```: The location from where to load the value
|
||||
- param ```valueIndex```: 0-based index of the value in the variable set/parameter set
|
||||
- param ```setIndexReg```: 0-based index of the set. Needed to calculate the actual index from the ```valueIndex```. Is equal to the global threadId
|
||||
- param ```setSize```: The size of one set. Needed to calculate the actual index from the ```valueIndex```
|
||||
- param ```setSize```: The size of one set. Needed to calculate the actual index from the ```valueIndex```. Total number of elements in the set (length(set))
|
||||
"
|
||||
function load_into_register(register::String, loadLocation::String, valueIndex::Integer, setIndexReg::String, setSize::Integer)::String
|
||||
# loadLocation + startIndex + valueIndex * bytes (4 in our case)
|
||||
|
42
package/src/Utils.jl
Normal file
42
package/src/Utils.jl
Normal file
@ -0,0 +1,42 @@
|
||||
module Utils
|
||||
|
||||
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
|
||||
|
||||
All entries that cannot be filled have ```invalidElement``` as their value
|
||||
"
|
||||
function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T
|
||||
vecCols = get_max_inner_length(vec)
|
||||
vecRows = length(vec)
|
||||
vecMat = fill(invalidElement, vecCols, vecRows)
|
||||
|
||||
for i in eachindex(vec)
|
||||
vecMat[:,i] = copyto!(vecMat[:,i], vec[i])
|
||||
end
|
||||
|
||||
return vecMat
|
||||
end
|
||||
|
||||
"Retrieves the number of entries for the largest inner vector"
|
||||
function get_max_inner_length(vec::Vector{Vector{T}})::Int where T
|
||||
maxLength = 0
|
||||
@inbounds for i in eachindex(vec)
|
||||
if length(vec[i]) > maxLength
|
||||
maxLength = length(vec[i])
|
||||
end
|
||||
end
|
||||
|
||||
return maxLength
|
||||
end
|
||||
|
||||
"Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```"
|
||||
function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T
|
||||
dataCols = Utils.get_max_inner_length(data)
|
||||
dataRows = length(data)
|
||||
dataMat = Utils.convert_to_matrix(data, invalidElement)
|
||||
cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions
|
||||
copyto!(cudaArr, dataMat)
|
||||
|
||||
return cudaArr
|
||||
end
|
||||
|
||||
end
|
Reference in New Issue
Block a user