small updates and notes for further writing
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
This commit is contained in:
@ -5,6 +5,10 @@ using .Transpiler
|
||||
using .Interpreter
|
||||
|
||||
const BENCHMARKS_RESULTS_PATH = "./results"
|
||||
|
||||
# TODO: Expressions can get much much bigger (into millions) (will be provided by Mr. Kronberger)
|
||||
# TODO: Variable-Sets: 1000 can be considered the minimum; 100.000 can be considered the maximum (will be provided by Mr. Kronberger)
|
||||
|
||||
exprsCPU = [
|
||||
# CPU interpreter requires an anonymous function and array ref s
|
||||
:(p[1] * x[1] + p[2]), # 5 op
|
||||
@ -24,7 +28,7 @@ exprsGPU = [
|
||||
|
||||
# p is the same for CPU and GPU
|
||||
p = [randn(Float32, 10) for _ in 1:length(exprsCPU)] # generate 10 random parameter values for each expr
|
||||
expr_reps = 100 # 100 parameter optimisation steps basically
|
||||
expr_reps = 100 # 100 parameter optimisation steps (local search; sequentially; only p changes but not X)
|
||||
|
||||
|
||||
@testset "CPU performance" begin
|
||||
@ -89,15 +93,15 @@ if compareWithCPU
|
||||
suite["CPU"]["large varset"] = @benchmarkable interpret_cpu(exprsCPU, X_large, p; repetitions=expr_reps)
|
||||
end
|
||||
|
||||
X_small_GPU = randn(Float32, 5, varsets_small)
|
||||
X_small_GPU = randn(Float32, 5, varsets_small) # column-major
|
||||
suite["GPUI"]["small varset"] = @benchmarkable interpret_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["small varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_small_GPU, p; repetitions=expr_reps)
|
||||
|
||||
X_medium_GPU = randn(Float32, 5, varsets_medium)
|
||||
X_medium_GPU = randn(Float32, 5, varsets_medium) # column-major
|
||||
suite["GPUI"]["medium varset"] = @benchmarkable interpret_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["medium varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_medium_GPU, p; repetitions=expr_reps)
|
||||
|
||||
X_large_GPU = randn(Float32, 5, varsets_large)
|
||||
X_large_GPU = randn(Float32, 5, varsets_large) # column-major
|
||||
suite["GPUI"]["large varset"] = @benchmarkable interpret_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
|
||||
suite["GPUT"]["large varset"] = @benchmarkable evaluate_gpu(exprsGPU, X_large_GPU, p; repetitions=expr_reps)
|
||||
|
||||
|
Reference in New Issue
Block a user