benchmarking: updated benchmarking suite and prepared for taking the benchmarks
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel
2025-05-15 16:25:32 +02:00
parent 3d80ae95e4
commit d7e18f183d
6 changed files with 57 additions and 48 deletions

View File

@ -56,40 +56,26 @@ function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, paramet
threads = min(variableCols, 256)
blocks = cld(variableCols, threads)
kernelName = "evaluate_gpu"
# TODO: Implement batching as a middleground between "transpile everything and then run" and "tranpile one run one" even though cudacall is async
@inbounds for i in eachindex(expressions)
@inbounds Threads.@threads for i in eachindex(expressions)
# if haskey(resultCache, expressions[i])
# kernels[i] = resultCache[expressions[i]]
# continue
# end
formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableCols, i-1) # i-1 because julia is 1-based but PTX needs 0-based indexing
# try
linker = CuLink()
add_data!(linker, "ExpressionProcessing", kernel)
image = complete(linker)
mod = CuModule(image)
formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableCols, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing
compiledKernel = CuFunction(mod, "ExpressionProcessing")
cudacall(compiledKernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
# resultCache[expressions[i]] = kernels[i]
# catch
# dump(expressions[i]; maxdepth=10)
# println()
# println()
# println(kernel)
# println()
# println()
# error(current_exceptions())
# end
linker = CuLink()
add_data!(linker, kernelName, kernel)
image = complete(linker)
mod = CuModule(image)
compiledKernel = CuFunction(mod, kernelName)
cudacall(compiledKernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
end
# for kernel in kernels
@ -107,13 +93,13 @@ end
- param ```expressionIndex```: The 0-based index of the expression
"
function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Integer, paramSetSize::Integer,
nrOfVariableSets::Integer, expressionIndex::Integer)::String
nrOfVariableSets::Integer, expressionIndex::Integer, kernelName::String)::String
exitJumpLocationMarker = "L__BB0_2"
ptxBuffer = IOBuffer()
regManager = Utils.RegisterManager(Dict(), Dict())
# TODO: Suboptimal solution. get_kernel_signature should also return the name of the registers used for the parameters, so further below, we do not have to hard-code them
signature, paramLoading = get_kernel_signature("ExpressionProcessing", [Float32, Float32, Float32], regManager) # Vars, Params, Results
signature, paramLoading = get_kernel_signature(kernelName, [Float32, Float32, Float32], regManager) # Vars, Params, Results
guardClause, threadId64Reg = get_guard_clause(exitJumpLocationMarker, nrOfVariableSets, regManager)
println(ptxBuffer, get_cuda_header())

View File

@ -78,4 +78,34 @@ function test_cpu_interpreter_nikuradse()
end
@test test_cpu_interpreter_nikuradse()
# @test test_cpu_interpreter_nikuradse()
data,varnames = readdlm("data/nikuradse_1.csv", ',', header=true);
X = convert(Matrix{Float32}, data)
X_t = permutedims(X) # for gpu
exprs = Expr[]
parameters = Vector{Vector{Float32}}()
varnames = ["x$i" for i in 1:10]
paramnames = ["p$i" for i in 1:20]
# data/esr_nvar2_len10.txt.gz_9.txt.gz has ~250_000 exprs
# data/esr_nvar2_len10.txt.gz_10.txt.gz has ~800_000 exrps
GZip.open("data/esr_nvar2_len10.txt.gz_9.txt.gz") do io
for line in eachline(io)
expr, p = parse_infix(line, varnames, paramnames)
push!(exprs, expr)
push!(parameters, randn(Float32, length(p)))
end
end
expr_reps = 100 # 100 parameter optimisation steps (local search; sequentially; only p changes but not X)
suite = BenchmarkGroup()
suite["CPU"] = BenchmarkGroup(["CPUInterpreter"])
suite["CPU"]["nikuradse_1"] = @benchmarkable interpret_cpu(exprs, X, parameters; repetitions=expr_reps, parallel=true)
loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
results = run(suite, verbose=true, seconds=28800) # 8 hour timeout
BenchmarkTools.save("./results-fh-new/cpu.json", results)

View File

@ -50,37 +50,30 @@ expr_reps = 100 # 100 parameter optimisation steps (local search; sequentially;
# Add /usr/local/cuda/bin in .bashrc to PATH to access ncu and nsys (do the tests on FH PCs)
# University setup at 10.20.1.7 and 10.20.1.13
compareWithCPU = false
compareWithCPU = true
suite = BenchmarkGroup()
suite["CPU"] = BenchmarkGroup(["CPUInterpreter"])
suite["GPUI"] = BenchmarkGroup(["GPUInterpreter"])
suite["GPUT"] = BenchmarkGroup(["GPUTranspiler"])
if compareWithCPU
suite["CPU"]["nikuradse_1"] = @benchmarkable interpret_cpu(exprs, X, parameters; repetitions=expr_reps)
suite["CPU"]["nikuradse_1_parallel"] = @benchmarkable interpret_cpu(exprs, X, parameters; repetitions=expr_reps, parallel=true)
end
# cacheInterpreter = Dict{Expr, PostfixType}()
suite["GPUI"]["nikuradse_1"] = @benchmarkable interpret_gpu(exprs, X_t, parameters; repetitions=expr_reps)
# cacheTranspilerFront = Dict{Expr, PostfixType}()
# cacheTranspilerRes = Dict{Expr, CuFunction}()
suite["GPUT"]["nikuradse_1"] = @benchmarkable evaluate_gpu(exprs, X_t, parameters; repetitions=expr_reps) # Takes forever. Needs more investigation
suite["GPUT"]["nikuradse_1"] = @benchmarkable evaluate_gpu(exprs, X_t, parameters; repetitions=expr_reps)
tune!(suite)
BenchmarkTools.save("params.json", params(suite))
throw("finished tuning")
# tune!(suite)
# BenchmarkTools.save("params.json", params(suite))
loadparams!(suite, BenchmarkTools.load("params.json")[1], :samples, :evals, :gctrial, :time_tolerance, :evals_set, :gcsample, :seconds, :overhead, :memory_tolerance)
results = run(suite, verbose=true, seconds=3600) # 1 hour because of CPU. lets see if more is needed
results = run(suite, verbose=true, seconds=28800) # 8 hour timeout
resultsCPU = BenchmarkTools.load("./results-fh-new/cpu.json")[1]
if compareWithCPU
medianCPU = median(results["CPU"])
stdCPU = std(results["CPU"])
medianCPU = median(resultsCPU["CPU"])
stdCPU = std(resultsCPU["CPU"])
medianInterpreter = median(results["GPUI"])
stdInterpreter = std(results["GPUI"])

View File

@ -1 +1 @@
[{"Julia":"1.11.5","BenchmarkTools":{"major":1,"minor":6,"patch":0,"prerelease":[],"build":[]}},[["BenchmarkGroup",{"data":{"CPU":["BenchmarkGroup",{"data":{},"tags":["CPUInterpreter"]}],"GPUT":["BenchmarkGroup",{"data":{},"tags":["GPUTranspiler"]}],"GPUI":["BenchmarkGroup",{"data":{"nikuradse_1":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":10000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}]},"tags":["GPUInterpreter"]}]},"tags":[]}]]]
[{"Julia":"1.11.5","BenchmarkTools":{"major":1,"minor":6,"patch":0,"prerelease":[],"build":[]}},[["BenchmarkGroup",{"data":{"CPU":["BenchmarkGroup",{"data":{"medium varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"large varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"small varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}]},"tags":["CPUInterpreter"]}],"GPUT":["BenchmarkGroup",{"data":{"medium varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"large varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"small varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}]},"tags":["GPUTranspiler"]}],"GPUI":["BenchmarkGroup",{"data":{"medium varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"large varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}],"small varset":["Parameters",{"gctrial":true,"time_tolerance":0.05,"evals_set":false,"samples":1000,"evals":1,"gcsample":false,"seconds":5.0,"overhead":0.0,"memory_tolerance":0.01}]},"tags":["GPUInterpreter"]}]},"tags":[]}]]]

View File

@ -17,10 +17,10 @@ end
@testset "CPU Interpreter" begin
# include("CpuInterpreterTests.jl")
include("CpuInterpreterTests.jl")
end
@testset "Performance tests" begin
# include("PerformanceTuning.jl")
include("PerformanceTests.jl")
# include("PerformanceTests.jl")
end