transpiler: results are now written in results array; preperation for performance testing
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
Daniel 2025-03-27 09:55:29 +01:00
parent baa37ea183
commit eaee21ca75
3 changed files with 61 additions and 32 deletions

View File

@ -19,19 +19,18 @@ using ..Utils
# Since the generated expressions should have between 10 and 50 symbols, I think allowing a max. of 128 32-bit registers should make for an easy algorithm. If during testing the result is slow, maybe try reducing the number of registers and perform more intelligent allocation/assignment
# With 128 Registers, one could have 32 Warps on one SM ((128 * 16 = 2048) * 32 == 64*1024 == max number of registers per SM) This means 512 Threads per SM in the worst case
#
# Make a "function execute(...)" that takes the data and the transpiled code. Pass the data to the kernel and start executing
# Note: Maybe make an additional function that transpiles and executed the code. This would then be the function the user calls
#
const Operand = Union{Float32, String} # Operand is either fixed value or register
cache = Dict{Expr, CuFunction}() # needed if multiple runs with the same expr but different parameters are performed
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
function evaluate(expressions::Vector{Expr}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})
varRows = size(variables, 1)
variableCols = size(variables, 2)
kernels = Vector{CuFunction}(undef, length(expressions))
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
# Threads.@threads for i in eachindex(expressions)
# TODO: Use cache
# kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
# linker = CuLink()
@ -43,7 +42,13 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variabl
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
# end
for i in eachindex(expressions)
kernel = transpile(expressions[i], varRows, Utils.get_max_inner_length(parameters))
if haskey(cache, expressions[i])
kernels[i] = cache[expressions[i]]
continue
end
formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableCols, i)
linker = CuLink()
add_data!(linker, "ExpressionProcessing", kernel)
@ -52,6 +57,7 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variabl
mod = CuModule(image)
kernels[i] = CuFunction(mod, "ExpressionProcessing")
cache[expressions[i]] = kernels[i]
end
cudaVars = CuArray(variables) # maybe put in shared memory (see runtests.jl for more info)
@ -61,13 +67,13 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, variabl
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
# execute each kernel (also try doing this with Threads.@threads. Since we can have multiple grids, this might improve performance)
variableCols = size(variables, 2)
for i in eachindex(kernels)
config = launch_configuration(kernels[i])
threads = min(variableCols, config.threads)
blocks = cld(variableCols, threads)
cudacall(kernels[i], Tuple{CuPtr{Cfloat},CuPtr{Cfloat},CuPtr{Cfloat}}, cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
cudacall(kernels[i], Tuple{CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}}, cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
break
end
end
@ -76,21 +82,24 @@ end
"
- param ```varSetSize```: The size of a variable set. Equal to number of rows of variable matrix (in a column major matrix)
- param ```paramSetSize```: The size of the longest parameter set. As it has to be stored in a column major matrix, the nr of rows is dependent oon the longest parameter set
- param ```expressionIndex```: The 1-based index of the expression
"
function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Integer, paramSetSize::Integer)::String
function transpile(expression::ExpressionProcessing.PostfixType, varSetSize::Integer, paramSetSize::Integer,
nrOfVariableSets::Integer, expressionIndex::Integer)::String
exitJumpLocationMarker = "\$L__BB0_2"
ptxBuffer = IOBuffer()
# TODO: Suboptimal solution
signature, paramLoading = get_kernel_signature("ExpressionProcessing", [Int32, Float32, Float32]) # nrOfVarSets, Vars, Params
guardClause, threadIdReg = get_guard_clause(exitJumpLocationMarker, "%parameter0") # parameter0 because first entry holds the number of variable sets and that is always stored in %parameter0
signature, paramLoading = get_kernel_signature("ExpressionProcessing", [Float32, Float32, Float32]) # nrOfVarSets, Vars, Params
guardClause, threadIdReg = get_guard_clause(exitJumpLocationMarker, nrOfVariableSets) # parameter0 because first entry holds the number of variable sets and that is always stored in %parameter0
println(ptxBuffer, get_cuda_header())
println(ptxBuffer, signature)
println(ptxBuffer, "{")
calc_code = generate_calculation_code(expression, "%parameter1", varSetSize, "%parameter2", paramSetSize, threadIdReg)
calc_code = generate_calculation_code(expression, "%parameter0", varSetSize, "%parameter1", paramSetSize, "%parameter2",
threadIdReg, expressionIndex, nrOfVariableSets)
println(ptxBuffer, get_register_definitions())
println(ptxBuffer, paramLoading)
println(ptxBuffer, guardClause)
@ -107,12 +116,15 @@ end
# TODO: Make version, target and address_size configurable; also see what address_size means exactly
function get_cuda_header()::String
return "
.version 7.1
.version 8.0
.target sm_61
.address_size 32
"
end
"
param ```parameters```: [1] = nr of var sets; [2] = variables; [3] = parameters; [4] = result
"
function get_kernel_signature(kernelName::String, parameters::Vector{DataType})::Tuple{String, String}
signatureBuffer = IOBuffer()
paramLoadingBuffer = IOBuffer()
@ -123,9 +135,9 @@ function get_kernel_signature(kernelName::String, parameters::Vector{DataType}):
for i in eachindex(parameters)
print(signatureBuffer, " .param .u32", " ", "param_", i)
parametersReg = get_next_free_register("r")
println(paramLoadingBuffer, "ld.param.u32 $parametersReg, [param_$i];")
println(paramLoadingBuffer, "cvta.to.global.u32 $(get_next_free_register("parameter")), $parametersReg;")
parametersLocation = get_next_free_register("r")
println(paramLoadingBuffer, "ld.param.u32 $parametersLocation, [param_$i];")
println(paramLoadingBuffer, "cvta.to.global.u32 $(get_next_free_register("parameter")), $parametersLocation;")
if i != lastindex(parameters)
println(signatureBuffer, ",")
end
@ -140,7 +152,7 @@ Constructs the PTX code used for handling the case where too many threads are st
- param ```nrOfVarSetsRegister```: The register which holds the total amount of variable sets for the kernel
"
function get_guard_clause(exitJumpLocation::String, nrOfVarSetsRegister::String)::Tuple{String, String}
function get_guard_clause(exitJumpLocation::String, nrOfVarSets::Integer)::Tuple{String, String}
guardBuffer = IOBuffer()
threadIds = get_next_free_register("r")
@ -154,8 +166,6 @@ function get_guard_clause(exitJumpLocation::String, nrOfVarSetsRegister::String)
globalThreadId = get_next_free_register("r") # basically the index of the thread in the variable set
breakCondition = get_next_free_register("p")
nrOfVarSets = get_next_free_register("i")
println(guardBuffer, "ld.global.u32 $nrOfVarSets, [$nrOfVarSetsRegister];")
println(guardBuffer, "mad.lo.s32 $globalThreadId, $threadIds, $threadsPerCTA, $currentThreadId;")
println(guardBuffer, "setp.ge.s32 $breakCondition, $globalThreadId, $nrOfVarSets;") # guard clause = index > nrOfVariableSets
@ -168,8 +178,9 @@ end
"
- param ```parametersSetSize```: Size of the largest parameter set
"
function generate_calculation_code(expression::ExpressionProcessing.PostfixType, variablesReg::String, variablesSetSize::Integer,
parametersReg::String, parametersSetSize::Integer, threadIdReg::String)::String
function generate_calculation_code(expression::ExpressionProcessing.PostfixType, variablesLocation::String, variablesSetSize::Integer,
parametersLocation::String, parametersSetSize::Integer, resultsLocation::String,
threadIdReg::String, expressionIndex::Integer, nrOfVarSets::Integer)::String
codeBuffer = IOBuffer()
operands = Vector{Operand}()
@ -196,24 +207,37 @@ function generate_calculation_code(expression::ExpressionProcessing.PostfixType,
if token.Value > 0 # varaibles
var, first_access = get_register_for_name("x$(token.Value)")
if first_access
println(codeBuffer, load_into_register(var, variablesReg, token.Value, threadIdReg, variablesSetSize))
println(codeBuffer, load_into_register(var, variablesLocation, token.Value, threadIdReg, variablesSetSize))
end
push!(operands, var)
else
absVal = abs(token.Value)
param, first_access = get_register_for_name("p$absVal")
if first_access
println(codeBuffer, load_into_register(param, parametersReg, absVal, threadIdReg, parametersSetSize))
println(codeBuffer, load_into_register(param, parametersLocation, absVal, threadIdReg, parametersSetSize))
end
push!(operands, param)
end
end
end
# resultIndex = ((expressionIndex - 1) * nrOfVarSets + threadIdReg) * bytes (4 in our case)
# resultsLocation[resultIndex] = "";
tempReg = get_next_free_register("i")
println(codeBuffer, "
add.u32 $tempReg, $((expressionIndex-1)*nrOfVarSets), $threadIdReg;
mul.lo.u32 $tempReg, $tempReg, $(sizeof(expressionIndex));
add.u32 $tempReg, $resultsLocation, $tempReg;
st.global.f32 [$tempReg], $(pop!(operands));
")
println(operands)
return String(take!(codeBuffer))
end
"
Loads a value from a location into the given register. It is assumed that the location refers to a column-major matrix
- param ```register```: The register where the loaded value will be stored
- param ```loadLocation```: The location from where to load the value
- param ```valueIndex```: 0-based index of the value in the variable set/parameter set
@ -263,6 +287,7 @@ function get_operation(operator::Operator, left::Operand, right::Union{Operand,
elseif operator == POWER
# x^y == 2^(y*log2(x)) as generated by nvcc for "pow(x, y)"
resultCode = "
// x^y:
lg2.approx.f32 $resultRegister, $left;
mul.f32 $resultRegister, $right, $resultRegister;
ex2.approx.f32 $resultRegister, $resultRegister;"
@ -271,11 +296,13 @@ function get_operation(operator::Operator, left::Operand, right::Union{Operand,
elseif operator == LOG
# log(x) == log2(x) * ln(2) as generated by nvcc for "log(x)"
resultCode = "
// log(x):
lg2.approx.f32 $resultRegister, $left;
mul.f32 $resultRegister, $resultRegister, 0.693147182;"
elseif operator == EXP
# e^x == 2^(x/ln(2)) as generated by nvcc for "exp(x)"
resultCode = "
// e^x:
mul.f32 $resultRegister, $left, 1.44269502;
ex2.approx.f32 $resultRegister, $resultRegister;"
elseif operator == SQRT

View File

@ -1,5 +1,7 @@
module Utils
using CUDA
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
All entries that cannot be filled have ```invalidElement``` as their value

View File

@ -24,11 +24,11 @@ parameters[2][2] = 0.0
postfixExpr = expr_to_postfix(expressions[1])
postfixExprs = Vector([postfixExpr])
push!(postfixExprs, expr_to_postfix(expressions[2]))
push!(postfixExprs, expr_to_postfix(:(5^3 + x1)))
push!(postfixExprs, expr_to_postfix(:(5^3 + x1 - p1)))
# generatedCode = Transpiler.transpile(postfixExpr)
generatedCode = Transpiler.transpile(postfixExprs[3], 2, 3) # TEMP
# println(generatedCode)
generatedCode = Transpiler.transpile(postfixExprs[3], 2, 3, 2, 3) # TEMP
println(generatedCode)
# CUDA.@sync interpret(postfixExprs, variables, parameters)
# This is just here for testing. This will be called inside the execute method in the Transpiler module
@ -42,11 +42,11 @@ parameters[2][2] = 0.0
end
@testset "Test transpiler evaluation" begin
postfixExprs = Vector{ExpressionProcessing.PostfixType}()
push!(postfixExprs, expr_to_postfix(expressions[1]))
push!(postfixExprs, expr_to_postfix(expressions[2]))
# postfixExprs = Vector{Expr}()
# push!(postfixExprs, expressions[1])
# push!(postfixExprs, expressions[2])
@time Transpiler.evaluate(postfixExprs, variables, parameters)
@time Transpiler.evaluate(expressions, variables, parameters)
end
#TODO: test performance of transpiler PTX generation when doing "return String(take!(buffer))" vs "return take!(buffer)"