benchmarking: updated transpiler to drastically reduce the number of transpilations at the expense of memory usage
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
This commit is contained in:
@ -14,37 +14,6 @@ const Operand = Union{Float32, String} # Operand is either fixed value or regist
|
||||
"
|
||||
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVars::CuArray{Float32}, variableColumns::Integer, variableRows::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
|
||||
# TODO: test this again with multiple threads. The first time I tried, I was using only one thread
|
||||
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
|
||||
# Threads.@threads for i in eachindex(expressions)
|
||||
# cacheLock = ReentrantLock()
|
||||
# cacheHit = false
|
||||
# lock(cacheLock) do
|
||||
# if haskey(transpilerCache, expressions[i])
|
||||
# kernels[i] = transpilerCache[expressions[i]]
|
||||
# cacheHit = true
|
||||
# end
|
||||
# end
|
||||
|
||||
# if cacheHit
|
||||
# continue
|
||||
# end
|
||||
|
||||
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
|
||||
|
||||
# kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableColumns, i-1) # i-1 because julia is 1-based but PTX needs 0-based indexing
|
||||
|
||||
# linker = CuLink()
|
||||
# add_data!(linker, "ExpressionProcessing", kernel)
|
||||
|
||||
# image = complete(linker)
|
||||
|
||||
# mod = CuModule(image)
|
||||
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
|
||||
|
||||
# @lock cacheLock transpilerCache[expressions[i]] = kernels[i]
|
||||
# end
|
||||
|
||||
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info)
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
@ -54,33 +23,44 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVar
|
||||
blocks = cld(variableColumns, threads)
|
||||
|
||||
kernelName = "evaluate_gpu"
|
||||
# TODO: Implement batching as a middleground between "transpile everything and then run" and "tranpile one run one" even though cudacall is async
|
||||
@inbounds Threads.@threads for i in eachindex(expressions)
|
||||
# if haskey(resultCache, expressions[i])
|
||||
# kernels[i] = resultCache[expressions[i]]
|
||||
# continue
|
||||
# end
|
||||
|
||||
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
|
||||
kernel = transpile(expressions[i], variableRows, Utils.get_max_inner_length(parameters), variableColumns, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing
|
||||
|
||||
linker = CuLink()
|
||||
add_data!(linker, kernelName, kernel)
|
||||
|
||||
image = complete(linker)
|
||||
mod = CuModule(image)
|
||||
compiledKernel = CuFunction(mod, kernelName)
|
||||
|
||||
compiledKernel = CompileKernel(kernel, kernelName)
|
||||
cudacall(compiledKernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
|
||||
end
|
||||
|
||||
# for kernel in kernels
|
||||
# cudacall(kernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
|
||||
# end
|
||||
|
||||
return cudaResults
|
||||
end
|
||||
|
||||
"
|
||||
A simplified version of the evaluate function. It takes a list of already compiled kernels to be executed. This should yield better performance, where the same expressions should be evaluated multiple times i.e. for parameter optimisation.
|
||||
"
|
||||
function evaluate(kernels::Vector{CuFunction}, cudaVars::CuArray{Float32}, nrOfVariableSets::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
||||
|
||||
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info)
|
||||
|
||||
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
||||
cudaResults = CuArray{Float32}(undef, nrOfVariableSets, length(expressions))
|
||||
|
||||
threads = min(nrOfVariableSets, 256)
|
||||
blocks = cld(nrOfVariableSets, threads)
|
||||
|
||||
@inbounds Threads.@threads for i in eachindex(kernels)
|
||||
cudacall(kernels[i], (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
|
||||
end
|
||||
|
||||
return cudaResults
|
||||
end
|
||||
|
||||
function CompileKernel(ptxKernel::String, kernelName::String)::CuFunction
|
||||
linker = CuLink()
|
||||
add_data!(linker, kernelName, ptxKernel)
|
||||
|
||||
image = complete(linker)
|
||||
mod = CuModule(image)
|
||||
return CuFunction(mod, kernelName)
|
||||
end
|
||||
|
||||
# To increase performance, it would probably be best for all helper functions to return their IO Buffer and not a string
|
||||
# seekstart(buf1); write(buf2, buf1)
|
||||
"
|
||||
|
Reference in New Issue
Block a user