benchmarking: updated transpiler to drastically reduce the number of transpilations at the expense of memory usage
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run

This commit is contained in:
2025-05-19 11:39:49 +02:00
parent 33e7edd4c8
commit f33551e25f
4 changed files with 48 additions and 69 deletions

View File

@ -14,37 +14,6 @@ const Operand = Union{Float32, String} # Operand is either fixed value or regist
"
function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVars::CuArray{Float32}, variableColumns::Integer, variableRows::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
# TODO: test this again with multiple threads. The first time I tried, I was using only one thread
# Test this parallel version again when doing performance tests. With the simple "functionality" tests this took 0.03 seconds while sequential took "0.00009" seconds
# Threads.@threads for i in eachindex(expressions)
# cacheLock = ReentrantLock()
# cacheHit = false
# lock(cacheLock) do
# if haskey(transpilerCache, expressions[i])
# kernels[i] = transpilerCache[expressions[i]]
# cacheHit = true
# end
# end
# if cacheHit
# continue
# end
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
# kernel = transpile(formattedExpr, varRows, Utils.get_max_inner_length(parameters), variableColumns, i-1) # i-1 because julia is 1-based but PTX needs 0-based indexing
# linker = CuLink()
# add_data!(linker, "ExpressionProcessing", kernel)
# image = complete(linker)
# mod = CuModule(image)
# kernels[i] = CuFunction(mod, "ExpressionProcessing")
# @lock cacheLock transpilerCache[expressions[i]] = kernels[i]
# end
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info)
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
@ -54,33 +23,44 @@ function evaluate(expressions::Vector{ExpressionProcessing.PostfixType}, cudaVar
blocks = cld(variableColumns, threads)
kernelName = "evaluate_gpu"
# TODO: Implement batching as a middleground between "transpile everything and then run" and "tranpile one run one" even though cudacall is async
@inbounds Threads.@threads for i in eachindex(expressions)
# if haskey(resultCache, expressions[i])
# kernels[i] = resultCache[expressions[i]]
# continue
# end
# formattedExpr = ExpressionProcessing.expr_to_postfix(expressions[i])
kernel = transpile(expressions[i], variableRows, Utils.get_max_inner_length(parameters), variableColumns, i-1, kernelName) # i-1 because julia is 1-based but PTX needs 0-based indexing
linker = CuLink()
add_data!(linker, kernelName, kernel)
image = complete(linker)
mod = CuModule(image)
compiledKernel = CuFunction(mod, kernelName)
compiledKernel = CompileKernel(kernel, kernelName)
cudacall(compiledKernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
end
# for kernel in kernels
# cudacall(kernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
# end
return cudaResults
end
"
A simplified version of the evaluate function. It takes a list of already compiled kernels to be executed. This should yield better performance, where the same expressions should be evaluated multiple times i.e. for parameter optimisation.
"
function evaluate(kernels::Vector{CuFunction}, cudaVars::CuArray{Float32}, nrOfVariableSets::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
cudaParams = Utils.create_cuda_array(parameters, NaN32) # maybe make constant (see PerformanceTests.jl for more info)
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, nrOfVariableSets, length(expressions))
threads = min(nrOfVariableSets, 256)
blocks = cld(nrOfVariableSets, threads)
@inbounds Threads.@threads for i in eachindex(kernels)
cudacall(kernels[i], (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars, cudaParams, cudaResults; threads=threads, blocks=blocks)
end
return cudaResults
end
function CompileKernel(ptxKernel::String, kernelName::String)::CuFunction
linker = CuLink()
add_data!(linker, kernelName, ptxKernel)
image = complete(linker)
mod = CuModule(image)
return CuFunction(mod, kernelName)
end
# To increase performance, it would probably be best for all helper functions to return their IO Buffer and not a string
# seekstart(buf1); write(buf2, buf1)
"