
 

Fachhochschul-Masterstudiengang 

SOFTWARE ENGINEERING 

4232 Hagenberg, Austria 
 

 
 
 
 
 

Interpreter and Transpiler for Simple 
Expressions on Nvidia GPUs using Julia 

 
 

 
 

Masterarbeit 
 

zur Erlangung des akademischen Grades 

Master of Science in Engineering 

 

 
Eingereicht von 

 

Daniel Roth, BSc 

 
 
 

 
 
 
 
 
 
 
 

Betreuung:  DI Dr. Gabriel Kronberger 
Begutachtung: DI Dr. Gabriel Kronberger 

 
 

Hagenberg, Juni 2025



 

 

Declaration 

 
I hereby declare and confirm that this thesis is entirely the result of my own original work. 

Where other sources of information have been used, they have been indicated as such and 

properly acknowledged. I further declare that this or similar work has not been submitted 

for credit elsewhere. 

 

This printed thesis is identical with the electronic version submitted. 

 

 

 

 

 

Date        Signature 

ii



Contents

Abstract v

Kurzfassung vi

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Fundamentals and Related Work 4
2.1 Equation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Programming GPUs . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 PTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Transpilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Concept and Design 21
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Transpiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 31
4.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 CPU side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 GPU side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Intermediate Representation . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 CPU Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 GPU Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



Contents iv

4.4 Transpiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 CPU Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Transpiler Backend . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 GPU Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation 51
5.1 Benchmark Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Software Configuration . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Performance Evaluation Process . . . . . . . . . . . . . . . . . . 53

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Performance Tuning Interpreter . . . . . . . . . . . . . . . . . . . 57
5.2.3 Transpiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 Performance Tuning Transpiler . . . . . . . . . . . . . . . . . . . 64
5.2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 69
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 72
Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Online sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Abstract

The objective of symbolic regression is to identify an expression that accurately models
a system based on a set of inputs. For instance, one might determine the flow through
pipes using inputs such as roughness, diameter, and length by conducting experiments
with varying input configurations and observing the resulting flow and derive an ex-
pression from the experiments. This methodology, exemplified by Nikuradse (1950), can
be applied to any system through symbolic regression. To find the best-fitting expres-
sion, millions of candidate expressions are generated, each requiring evaluation against
every data point to assess how well they fit to the system. Consequently, millions of
evaluations must be performed, a process that is computationally intensive and time-
consuming. Thus, optimizing the evaluation phase of symbolic regression is crucial for
discovering expressions that describe large and complex systems within a feasible time-
frame.

This thesis presents the design and implementation of two evaluators that utilize the
GPU to evaluate expressions generated at runtime by the symbolic regression algorithm.
Performance benchmarks are conducted to compare the efficiency of the GPU evaluators
against a CPU evaluator.

The benchmark results indicate that the GPU can serve as a viable alternative to
the CPU in certain scenarios. The determining factor for choosing between GPU and
CPU evaluation is the number of data points. In a scenario with 10 000 expressions and
10 000 data points, the GPU outperformed the CPU by a factor between 1.6 and 2.

This master thesis is associated with the FFG COMET project ProMetHeus (#904919).
The developed software is used and further developed for symbolic regression in the
ProMetHeus project.

v



Kurzfassung

Das Ziel der symbolischen Regression ist es, einen Ausdruck zu finden, der ein Sys-
tem basierend auf einer Reihe von Variablen modelliert. Beispielsweise kann man den
Durchfluss durch Rohre unter Verwendung von Variablen wie Rauheit, Durchmesser
und Länge bestimmen, indem Experimente mit verschiedenen Werten für die Variablen
durchgeführt werden. Für jedes Experiment wird der Durchfluss gemessen, wodurch
man eine allgemeine Formel ableiten kann, welche die Beziehung der Variablen mit
dem Durchfluss beschreibt. Diese Methodik, veranschaulicht durch die Arbeit von Ni-
kuradse (1950), kann auf unterschiedliche Systeme mithilfe von symbolischer Regression
angewendet werden. Um einen Ausdruck zu finden, welcher das System am besten be-
schreibt, werden Millionen von Kandidatenausdrücken generiert. Diese müssen, unter
Verwendung der Daten aller Experimente ausgewertet werden, um ihre Passgenauigkeit
zum System zu beurteilen. Folglich müssen Millionen von Auswertungen durchgeführt
werden, ein Prozess, der rechenintensiv und zeitaufwendig ist. Daher ist die Optimierung
der Auswertungsphase der symbolischen Regression entscheidend. So wird es ermöglicht
Ausdrücke in einem angemessenen Zeitrahmen zu finden, welche große und komplexe
Systeme beschreiben.

Diese Arbeit präsentiert das Design und die Implementierung von zwei Evaluato-
ren, die die Grafikkarte (GPU) nutzen, um Ausdrücke zu bewerten, die zur Laufzeit
der symbolischen Regression generiert werden. Leistungsbenchmarks werden durchge-
führt, um die Performanz der GPU-Evaluatoren mit dem aktuellen CPU-Evaluator zu
vergleichen.

Die Benchmark-Ergebnisse zeigen, dass die GPU in bestimmten Szenarien eine ge-
eignete Alternative zur CPU darstellt. Der entscheidende Faktor für die Wahl zwischen
GPU- und CPU-Auswertung ist die Anzahl der Experimente und folglich die Anzahl
der Datenpunkte. In einer Konfiguration mit 10 000 Ausdrücken und 10 000 Variablen-
konfigurationen übertraf die GPU die CPU um ein bedeutendes Maß.

Diese Masterarbeit ist Teil des FFG COMET Projekt ProMetHeus (#904919). Die
entwickelte Software wird für die symbolische Regression im ProMetHeus Projekt ver-
wendet und weiterentwickelt.

vi



Chapter 1

Introduction

This chapter provides an entry point for this thesis. First, the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Finally, the structure of this thesis is described, explaining how each part contributes
to answering the research questions.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning or symbolic regression is another field that
can heavily benefit from optimisation. One part of equation learning, is to evaluate the
expressions generated by a search algorithm, which can make up a significant portion
of the runtime. This thesis is concerned with optimising the evaluation part to increase
the overall performance of equation learning algorithms.

The following expression 5−abs(𝑥1)√𝑝1/10+2𝑥2 , which contains simple mathemat-
ical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛, is one example that can be
generated by the equation learning algorithm, Usually an equation learning algorithm
generates hundreds or even thousands of such expressions per iteration, all of which
have to be evaluated. Additionally, multiple different values must be entered for all
variables and parameters, drastically increasing the amount of evaluations that need to
be performed.

In his blog, Sutter (2004) described how the free lunch is over in terms of the ever-
increasing performance of hardware like the CPU. He states that to gain additional
performance, developers need to start developing software for multiple cores and not
just hope that on the next generation of CPUs the program magically runs faster.
While this approach means more development overhead, a much greater speed-up can
be achieved. However, in some cases the speed-up achieved by this is still not large
enough, and another approach is needed. One of these approaches is the utilisation
of Graphics Processing Units (GPUs) as an easy and affordable option as compared to

1



1. Introduction 2

compute clusters. Especially when talking about performance per dollar, GPUs are very
inexpensive as found by Brodtkorb et al. (2013). Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using GPUs for weather simulation. In addition
to computer simulations, GPU acceleration also can be found in other places such as
networking (S. Han et al., 2010) or structural analysis of buildings (Georgescu et al.,
2013). These solutions were all developed using CUDA1. However, it is also possible to
develop assembly like code for GPUs using Parallel Thread Execution (PTX)2 to gain
more control.

1.2 Research Question
Given the successful implementation of GPU acceleration, the aim of this thesis is to
improve the performance of evaluating mathematical equations, generated at runtime
for symbolic regression using GPUs. Therefore, the following research questions are
formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on GPUs?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a GPU than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
feasible. If it is feasible, it is important to determine if evaluating the expressions on
the GPU improves the performance over a parallelised CPU evaluator. To answer if the
GPU evaluator is faster than the CPU evaluator, the last research question is important.
As there are two major ways of implementing an evaluator on the GPU, both need to
be implemented and evaluated to finally state if evaluating expressions on the GPU is
faster and if so, which type of implementation results in the best performance under
which circumstances.

1.3 Thesis Structure
In order to answer the research questions, this thesis is divided into the following chap-
ters:
Chapter 2: Fundamentals and Related Work

In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

1https://developer.nvidia.com/cuda-toolkit
2https://docs.nvidia.com/cuda/parallel-thread-execution/

https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/parallel-thread-execution/
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Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
The details of the implementation with the used technologies are covered, such
as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. All three evaluators will be compared against each other
and the form of the expressions used for the comparisons are outlined. The com-
parison will not only include the time taken for the pure evaluation, but it will
also include the overhead, like PTX code generation. Finally, the results of the
comparison of the GPU and CPU evaluators are presented to show which of these
yields the best performance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.



Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning or symbolic
regression to establish common knowledge of the topic and problem this thesis is trying
to solve. First the field of equation learning is explored which helps to contextualise the
topic of this thesis. The main part of this chapter is split into two sub-parts. The first
part is exploring research that has been done in the field of general purpose computations
on the GPU (GPGPU) as well as the fundamentals of it. Focus lies on exploring how
graphics processing units (GPUs) are used to achieve substantial speed-ups and when
and where they can be effectively employed. The second part describes the basics of
how interpreters and compilers are built and how they can be adapted to the workflow
of programming GPUs. When discussing GPU programming concepts, the terminology
used is that of Nvidia and may differ from that used for AMD GPUs.

2.1 Equation learning
Equation learning is a field of research that can be used for understanding and discover-
ing equations from a set of data from various fields like mathematics and physics. Data
is usually much more abundant while models often are elusive which is demonstrated by
Guillemot (2022) where they explain how validating the models against large amounts
of data is a big part in creating such models. Because of this effort, generating equa-
tions with a computer can more easily lead to discovering equations that describe the
observed data. In one instance Werner et al. (2021) described that they want to find
an expression to predict the power loss of an electric machine based on known input
values. They used four inputs, direct and quadratic current as well as temperature and
motor speed, and they have an observed output which is the power loss. With the help
of an equation learner, they were able to generate useful results.

A more literal interpretation of equation learning is demonstrated by Pfahler and
Morik (2020). They use machine learning to learn the form of equations to simplify
the discovery of relevant publications. Instead of searching for keywords which might
differ from one field of research to another, they allow searching by the equations the
publications use. This helps as the form of equations stay the same over different fields
and are therefore not subject to specific terminology. However, this form of equation
learning is not relevant for this thesis.

4



2. Fundamentals and Related Work 5

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Using the evo-
lutionary algorithm genetic programming (GP) for different problems, including sym-
bolic regression, was first popularised by Koza (1994). He described that finding a
computer program to solve a problem for a given input and output, can be done by
traversing the search space of relevant solutions. This fits well for the goal of symbolic
regression, where a mathematical expression needs to be found to describe a problem
with specific inputs and outputs. Later, Koza (2010) provided an overview of results
that were generated with the help of GP and were competitive with human solutions,
showing how symbolic regression is a useful tool. In their book Symbolic Regression,
Kronberger et al. (2024) show how symbolic regression can be applied for real world
scenarios. One of these scenarios is finding simpler but still accurate models for hydro-
dynamic simulations to speed up the design process of ship hulls. Another one is finding
an expression to find the remaining capacity of a Lithium-ion battery by measuring
its voltage. In total, they described ten scenarios from different domains to show the
capabilities of symbolic regression.

Keijzer (2004), Gustafson et al. (2005), Korns (2011), Korns (2015), Bruneton (2025)
and many more presented ways of improving the quality of symbolic regression algo-
rithms, making symbolic regression more feasible for problem-solving. Bartlett et al.
(2024) describe an exhaustive approach for symbolic regression which can find the true
optimum for perfectly optimised parameters while retaining simple and interpretable
results.

Alternatives to GP for symbolic regression also exist with for example Bayesian Sym-
bolic Regression as proposed by Jin et al. (2020). Their approach increased the quality
of the results noticeably compared to GP alternatives by for example incorporating prior
knowledge. In order to avoid overfitting, Bomarito et al. (2022) have proposed a way of
using Bayesian model selection to combat overfitting and reduce the complexity of the
generated expressions. This also helps with making the expressions more generalisable
and therefore be applicable to unseen inputs.

Another alternative to meta-heuristics like GP is the usage of neural networks. One
such alternative has been introduced by Martius and Lampert (2016) where they used
a neural network for their equation learner with mixed results. Later, an extension has
been provided by Sahoo et al. (2018). They introduced the division operator, which
led to much better results. Further improvements have been described by Werner et al.
(2021) with their informed equation learner. By incorporating domain expert knowledge
they could limit the search space and find better solutions for particular domains. One
drawback of these three implementations is the fact that their neural networks are fixed.
An equation learner which can change the network at runtime and therefore evolve over
time is proposed by Dong et al. (2024). Their approach further improved the results of
neural network equation learners. In their work, Lemos et al. (2022) also used a neural
network for symbolic regression. They were able to find an equivalent to Newton’s law
of gravitation and rediscovered Newton’s second and third law only with trajectory data
of bodies of our solar system. Although these laws were already known, this research
has shown how neural networks and machine learning in general have great potential.

An implementation for an equation learner in the physics domain is proposed by
Brunton et al. (2016). Their algorithm was specifically designed for nonlinear dynamics
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often occurring in physical systems. An improvement to this approach was introduced
by Sun et al. (2023) where they used Monte Carlo tree search. When compared to other
implementations their equation learner was able to create better results but has the
main drawback of high computational cost.

2.1.1 Genetic Programming
To generate equations, first the operators which are allowed to be used during generation
need to be defined. It is also possible to define a maximum length for an expression as
proposed by Koza (1994). Expressions also consist of variables which represent the
inputs as well as constants. Assuming that a given problem has two variables and one
parameter, GP could generate an expression as seen in Equation 2.1 where 𝑥𝑛 are the
variables, 𝑝1 is the parameter and 𝑂 is the output which should correspond to the
observed output for the given variables.

𝑂 = 5− abs(𝑥1) + 𝑥2
√

𝑝1/10 (2.1)

A typical GP generation generates multiple expressions at once. If for example a
single generation consists of 300 solution candidates or expressions, each of these ex-
pressions needs to be evaluated at least once to determine how well they can produce
the desired output.

Each expression is part of a search space of all possible expressions consisting of
the defined operators, variables and constants up to a defined maximum length. With
the help of GP, this search space is explored, however, the generated expressions might
not perfectly fit the data. To further refine the generated expressions, the concept of
parameter optimisation can be used as described by Kommenda (2018). Parameter op-
timisation is a kind of local search where parameters 𝑝 are introduced in the generated
equations. In Equation 2.1 the parameter 𝑝1 will be modified over some amount of iter-
ations. This modification should assist in finding a local or even the global optimum by
better fitting the expressions to the data. For example 50 local search steps can be used,
meaning that each expression needs to be evaluated 50 times with the same variables,
but different parameters. As a result, one GP generation consequently requires a total
300 * 50 = 15 000 evaluations of the expressions. However, typically more than one GP
generation is needed to find a good solution. While the exact number of generations
is problem specific, for this example a total of 100 generations can be assumed. Each
generation again generates 300 expressions and needs to perform 50 local search steps.
This results in a total of 300 * 50 * 100 = 1 500 000 evaluations which need to be per-
formed during the entire runtime of the GP algorithm. These values have been taken
from the GP algorithm for predicting discharge voltage curves of batteries as described
by Kronberger et al. (2024). Their GP algorithm converged after 54 generations, result-
ing in 300 * 50 * 54 ≈ 800 000 evaluations. This calculation omits the number of data
points, which are the main contributor towards the total runtime. As for each generated
expression, each data point needs to be used for parametrising the variables, drastically
increasing the number of evaluations. They used a total of 11 000 data points, resulting
in a total of 800 000*11 000 = 8.8billion evaluations. Their results took over two days to
compute on an eight core desktop CPU. While they did not provide runtime information
for all problems they tested, the voltage curve prediction was the slowest. The other
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problems were in the range of a few seconds and up to a day. Especially the problems
that took several hours to days to finish show, that there is still room for performance
improvements. While a better CPU with more cores can be used, it is interesting to
determine, if using GPUs can yield noticeable better performance.

In his master’s thesis Weinberger (2018) explored the possibility of utilising vector
operations in the field of GP. He mainly focused on vectorising the evaluation on the
CPU and by utilising the GPU to evaluate the expression trees generated by a GP
algorithm. By utilising OpenCL and an AMD GPU he achieved a speed-up of two
when utilising vectorisation on the CPU and a speed-up of 116 when utilising the GPU.
This shows that the GPU also has great potential in the more specific case of symbolic
regression with the above described parameter optimisation.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many dif-
ferent applications. Originally they were designed to improve performance and visual
quality in games. Dokken et al. (2005) first described the usage of GPUs for general
purpose programming (GPGPU). They have shown how the graphics pipeline can be
used for GPGPU programming. Because this approach also requires the programmer to
understand the graphics terminology, this was not a great solution. Therefore, Nvidia
released CUDA1 in 2007 with the goal of allowing developers to program GPUs indepen-
dent of the graphics pipeline and terminology. A study of the programmability of GPUs
with CUDA and the resulting performance has been conducted by Huang et al. (2008).
They found that GPGPU programming has potential, even for non-embarassingly par-
allel problems.

Research is also done in making the low level CUDA development simpler. T. D.
Han and Abdelrahman (2011) have described a directive-based language to make de-
velopment simpler and less error-prone, while retaining the performance of handwritten
code. To drastically simplify CUDA development, Besard et al. (2019b) showed that
it is possible to develop with CUDA in the high level programming language Julia2

with similar performance to CUDA written in C. In a subsequent study W.-C. Lin and
McIntosh-Smith (2021) found, that high performance computing (HPC) on the CPU
and GPU in Julia performs similar to HPC development in C. This means that Julia can
be a viable alternative to Fortran, C and C++ in the HPC field. Additional Julia has
the benefit of developer comfort since it is a high level language with modern features
such as a garbage-collector. Besard et al. (2019a) have also shown how the combination
of Julia and CUDA help in rapidly developing HPC software. While this thesis in gen-
eral revolves around CUDA, there also exist alternatives by AMD called ROCm3 and a
vendor independent alternative called OpenCL4.

If not specified otherwise, the following section and its subsections use the infor-
mation presented by Nvidia (2025b) in their CUDA programming guide. While in the
early days of GPGPU programming a lot of research has been done to assess if this

1https://developer.nvidia.com/cuda-toolkit
2https://julialang.org/
3https://www.amd.com/de/products/software/rocm.html
4https://www.khronos.org/opencl/

https://developer.nvidia.com/cuda-toolkit
https://julialang.org/
https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/
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approach is feasible, it now seems obvious to use GPUs to accelerate algorithms. GPUs
have been used early to speed up weather simulation models. Michalakes and Vachhara-
jani (2008) proposed a method for simulating weather with the Weather Research and
Forecast (WRF) model on a GPU. With their approach, they reached a speed-up of 5
to 2 for the most compute intensive task, with little GPU optimisation effort. They also
found that the GPU usage was low, meaning there are resources and potential for more
detailed simulations.

Generally, simulations are great candidates for using GPUs, as they can benefit heav-
ily from a high degree of parallelism and data throughput. Köster et al. (2020b) have
developed a way of using adaptive time steps on the GPU to considerably improve the
performance of numerical and discrete simulations. In addition to the performance gains
they were able to retain the precision and constraint correctness of the simulation. Black
hole simulations are crucial for science and education for a better understanding of our
world. Verbraeck and Eisemann (2021) have shown that simulating complex Kerr (rotat-
ing) black holes can be done on consumer hardware in a few seconds. Schwarzschild black
hole simulations can be performed in real-time with GPUs as described by Hissbach et
al. (2022) which is especially helpful for educational scenarios. While both approaches
do not have the same accuracy as detailed simulations on supercomputers, they show
how a single GPU can yield similar accuracy at a fraction of the cost.

Software network routing can also heavily benefit from GPU acceleration as shown
by S. Han et al. (2010), where they achieved a significantly higher throughput than
with a CPU only implementation. Finite element structural analysis is an essential tool
for many branches of engineering and can also heavily benefit from the usage of GPUs
as demonstrated by Georgescu et al. (2013). Generating test data for DeepQ learning
can also significantly benefit from using the GPU (Köster et al., 2022). However, it also
needs to be noted, that GPUs are not always better performing than CPUs as illustrated
by Lee et al. (2010), so it is important to consider if it is worth using GPUs for specific
tasks.

2.2.1 Programming GPUs
The development process on a GPU is vastly different from a CPU. A CPU has tens
or hundreds of complex cores with the AMD Epyc 99655 having 192 cores and twice as
many threads. Current CPUs are complex, and often contain features such as sophisti-
cated branch prediction among other things to achieve higher and higher performance.
This makes a CPU perfect for handling complex control flows on a single program thread
and even multiple threads simultaneously (Palacios & Triska, 2011). However, as seen
in Section 2.2, this often is not enough. On the other hand, a GPU contains thousands
or even tens of thousands of cores. For example, the GeForce RTX 50906 contains a
total of 21 760 CUDA cores. To achieve this enormous core count, a single GPU core
has to be much simpler than a single CPU core. As described by Nvidia (2025b), a GPU
designates much more transistors towards floating-point computations. This, however,
results in less efficient integer arithmetic and control flow handling. There is also less
Cache available per core and clock speeds are usually also much lower than those on a

5https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
6https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/


2. Fundamentals and Related Work 9

Figure 2.1: Overview of the architecture of a CPU (left) and a GPU (right). Note the
higher number of simpler and smaller cores on the GPU (Nvidia, 2025b).

CPU. An overview of the differences of a CPU and a GPU architecture can be seen in
Figure 2.1.

Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice
when considering improving the performance of an algorithm. Because of the high num-
ber of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD
architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states
that there is a single stream of instructions that is executed on a huge number of data
streams. Franchetti et al. (2005) and Tian et al. (2012) describe ways of using SIMD
instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7
respectively by using SIMD instructions instead of serial computations. Extending this
to GPUs which are specifically built for SIMD/data parallel calculations shows why
they are so powerful despite having less complex and slower cores than a CPU. It is also
important to note, that a GPU also always needs a CPU, as the CPU is responsible for
sending the data to the GPU and starting the GPU program. In GPGPU programming,
the CPU is usually called the host, while the GPU is usually called the device.

Thread Hierarchy and Tuning

The thousands of cores on a GPU, as well as the threads created by the developer,
are grouped together in several categories. This is the so-called thread hierarchy of
GPUs. The developer can influence this grouping to a degree which allows them to tune
their algorithm for optimal performance. To develop a well performing algorithm, it
is necessary to know how this grouping works. Tuning the grouping is unique to each
algorithm and also dependent on the GPU used, which means it is important to test a
lot of different configurations to achieve the best possible result. This section aims at
exploring the thread hierarchy and how it can be tuned to fit an algorithm.

At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is
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Figure 2.2: An overview of the thread hierarchy with blocks being split into multiple
warps and their shared memory (AMD, 2025b).

a hardware unit responsible for scheduling and executing threads and also contains
the registers used by these threads. An SM is always executing a group of 32 threads
simultaneously, and this group is called a warp. The number of threads that can be
started is virtually unlimited. However, threads must be grouped in a block, with one
block typically containing a maximum of 1024 threads but is often configured to be less.
Therefore, if more than 1024 threads are required, more blocks must be created. Blocks
can also be grouped into thread block clusters which is optional, but can be useful in
certain scenarios. All thread blocks or thread block clusters are part of a grid, which
manifests as a dispatch of the code run on the GPU, also called kernel (AMD, 2025b).
All threads in one block have access to some shared memory, which can be used for
L1 caching or communication between threads. It is important that the blocks can be
scheduled independently, with no dependencies between them. This allows the scheduler
to schedule blocks and threads as efficiently as possible. All threads within a warp are
guaranteed to be part of the same block, and are therefore executed simultaneously and
can access the same memory addresses. Figure 2.2 depicts how threads in a block are
grouped into warps for execution and how they shared memory.
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A piece of code that is executed on a GPU is written as a kernel which can be
configured. The most important configuration is how threads are grouped into blocks.
The GPU allows the kernel to allocate threads and blocks and block clusters in up to
three dimensions. This is often useful because of the already mentioned shared memory,
which will be explained in more detail in Section 2.2.1. Considering the case where an
image needs to be blurred, it not only simplifies the development if threads are arranged
in a 2D grid, it also helps with optimising memory access. As the threads in a block, need
to access a lot of the same data, this data can be loaded in the shared memory of the
block. This allows the data to be accessed much quicker compared to when threads are
allocated in only one dimension. With one dimensional blocks it is possible that threads
assigned to nearby pixels, are part of a different block, leading to a lot of duplicate
data transfer. The size in each dimension of a block can be almost arbitrary within the
maximum allowed number of threads. However, blocks that are too large might lead to
other problems which are described in more detail in Section 2.2.1.

Once a kernel is dispatched, all threads start at the same point in a program. How-
ever, because a thread may encounter instructions, such as branches, where it can take a
different path to the other threads, or in other words diverge, each thread has a unique
instruction pointer. This allows threads to work independently, even if they are part
of the same warp. However, because of the SIMD architecture, all threads in a warp
must execute the same instructions and if threads start to diverge, the SM must pause
threads with different instructions and execute them later. Figure 2.3 shows how such
divergences can impact performance. The situation described in the figure also shows,
that the thread could re-converge after the divergence. On older hardware this does not
happen and results in T2 being executed after T1 and T3 have finished. In situations
where there is a lot of data dependent thread divergence, most of the benefits of us-
ing a GPU are likely to be lost. Threads not executing the same instruction is strictly
speaking against the SIMD principle, but can happen in reality, due to data dependent
branching. Consequently, this leads to poor resource utilisation, which in turn leads to
poor performance. Another way in which threads can be paused (inactive threads) is the
fact that sometimes, the number of threads started is not divisible by 32. In such cases,
the last warp still contains 32 threads but only the threads with work are executed.

Modern GPUs implement what is known as the Single-Instruction Multiple-Thread
(SIMT) architecture. In many cases a developer does not need to know the details of
SIMT and can design fast, correct and accurate programs with just the SIMD architec-
ture in mind. However, leveraging the power of SIMT can yield substantial performance
gains by re-converging threads after data-dependent divergence has occurred. SIMT can
also help with increasing the occupancy of the GPU. Occupancy and its importance to
performance is discussed in detail in Section 2.2.1.

A stack-less re-convergence algorithm was proposed by Collange (2011) as an alter-
native to the default stack-based re-convergence algorithm. Their algorithm was able
to achieve higher performance than the default one. Another approach for increasing
occupancy using the SIMT architecture is proposed by Fung and Aamodt (2011). They
introduced a technique for compacting thread blocks by moving divergent threads to
new warps until they re-converge. This approach resulted in a noticeable speed-up be-
tween 17% and 22%. Another example where a SIMT aware algorithm can perform
better was proposed by Köster et al. (2020a). While they did not implement techniques
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Figure 2.3: Thread T2 wants to execute instruction B while T1 and T3 want to execute
instruction A. Therefore T2 will be an inactive thread this cycle and active once T1 and
T3 are finished. This means that now the divergent threads are serialised.

for thread re-convergence, they implemented a thread compaction algorithm. On data-
dependent divergence it is possible for threads to end early, leaving a warp with only
partial active threads. This means the inactive threads are still occupied and cannot be
used for other work. Their thread compaction tackles this problem by moving active
threads into a new thread block, releasing the inactive threads to perform other work.
With this they were able to gain a speed-up of roughly 4 times compared to previous
implementations.

Adapting Multiple-Instruction Multiple-Data (MIMD) programs with synchronisa-
tion to run on SIMT architecture can be a difficult task, especially if the underlying
architecture is not well understood. A static analysis tool and a transformer specifically
designed to help avoid deadlocks with MIMD synchronisation is proposed by ElTantawy
and Aamodt (2016). In addition, they proposed a hardware re-convergence mechanism
that supports MIMD synchronisation. A survey by Khairy et al. (2019) explores differ-
ent aspects of improving GPGPU performance architecturally. Specifically, they have
compiled a list of different publications discussing algorithms for thread re-convergence,
thread compaction and much more. Their main goal was to give a broad overview of
many ways to improve the performance of GPGPU programming to help other devel-
opers.

Memory Model

On a GPU there are two parts that contribute to the performance of an algorithm. The
one already looked at is the compute-portion of the GPU. This is necessary because if
threads are serialised or run inefficiently, there is nothing that can make the algorithm
execute faster. However, algorithms run on a GPU usually require huge amounts of
data to be processed, as they are designed for exactly that purpose. The purpose of this
section is to explain how the memory model of the GPU works and how it can influence
the performance of an algorithm. In Figure 2.4 the memory layout and the kinds of
memory available are depicted. The different parts will be explained in this section.

On a GPU there are multiple levels and kinds of memory available. All these levels
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Figure 2.4: The layout of the memory in the GPU. The connections between the memory
regions can be seen as well as the different kinds of memory available.

and kinds have different purposes they are optimised for. This means that it is important
to know what they are and how they can be best used for specific tasks. On the lowest
level, threads have registers and local memory available. Registers are the fastest way to
access memory, but they are also the least abundant memory with up to a maximum of
255 32-Bit registers per thread on Nvidia GPUs and 256 on AMD GPUs (AMD, 2025a).
However, using all registers of a thread can lead to other problems which are described
in more detail in Section 2.2.1. In contrast to registers, local memory is significantly
slower. This is due to the fact, that local memory is actually stored in global memory and
therefore has the same limitations as explained later. This means that it is important to
try and avoid local memory as much as possible. Local memory is usually only used when
a thread is using too many registers. The compiler will then spill the remaining data
into local memory and load it into registers once needed, slowing down the application
drastically.

Shared memory is the next tier of memory on a GPU. Unlike local memory and
registers, shared memory is shared between all threads inside a block. The amount of
shared memory is depending on the GPU architecture but for Nvidia it hovers at around
100 Kilobyte (KB) per block. While this memory is slower than registers, its primary
use-case is communicating and sharing data between threads in a block. If all threads in
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a block access a lot of overlapping data this data can be loaded from global memory into
faster shared memory once. It can then be accessed multiple times, further increasing
performance. Loading data into shared memory and accessing that data has to be done
manually. Because shared memory is part of the unified data cache, it can either be used
as a cache or for manual use, meaning a developer can allocate more shared memory
towards caching if needed. Another feature of shared memory are the so-called memory
banks. Shared memory is always split into 32 equally sized memory modules also called
memory banks. All available memory addresses lie in one of these banks. This means if
two threads access two memory addresses which lie in different banks, the access can
be performed simultaneously, increasing the throughput.

The most abundant and slowest memory is the global memory and resides in device
memory. A key constraint of device memory and therefore global memory is, that can
only be accessed in either 32, 64 or 128 byte chunks. This means if a thread wants
to access 8 bytes from global memory, alongside the 8 bytes, the 24 bytes after the
requested 8 bytes are also transferred. As a result, the throughput is only a fourth of
the theoretical maximum. Therefore, it is important to follow optimal access patterns.
What these optimal patterns are, are architecture dependent and are described in the
according sections in the CUDA programming guide.

A small portion of device memory is allocated to constant memory. Constant memory
is accessible by all threads and as the name implies, can not be written to by threads.
It can be initialised by the CPU when starting a kernel if needed. As constant memory
has a separate cache, it can be used to speed-up data access for constant and frequently
accessed data.

Another special kind of memory is the texture and surface memory. According to
AMD (2025b) texture memory is read-only memory, while surface memory can also be
written to, which is the only difference between these two kinds of memory. Nvidia does
not explicitly state this behaviour, but due to the fact that accessing textures is only
performed via caches, it is implied that on Nvidia GPUs, texture memory is also read-
only. As the name implies, this kind of memory is optimised for accessing textures. This
means that threads of the same warp, accessing data which is spatially close together,
will result in increased performance. As already mentioned, surface memory works the
same way, with the difference, that it can be written to. It is therefore well suited for
manipulating two- or three-dimensional data.

Occupancy

Occupancy describes the utilisation of a GPU. A high occupancy means, that there are
Warps executing, or in other words, the cores are occupied with work. This is impor-
tant, as a low occupancy means that the GPU is waiting for work to be scheduled and is
therefore idle. As a result, it is desired to achieve high occupancy in order to increase the
performance of an algorithm. It needs to be noted, that occupancy is not the only op-
tion for improving performance. As it is possible for the GPU to have a high occupancy
while performing a lot of unnecessary or redundant work or utilising compute-resources
that are slower. An example for the latter would be developing an algorithm that uses
64-bit floating point (FP64) numbers while 32-bit floating point (FP32) numbers would
have sufficient accuracy. Because GPUs tend to have fewer FP64 compute-resources
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Compute Capability 8.9 10.x
Max. number of threads per block 1 024
Warp size 32 threads
Max. number of warps per SM 48 64
Max. number of blocks per SM 24 32
Max. number of threads per SM 1 536 2 048
Number of 32-bit registers per SM 64 000
Max. number of 32-bit registers per block 64 000
Max. number of 32-bit registers per thread 255
Max. amount of shared memory per SM 100 Kilobytes 228 Kilobytes
Max. amount of shared memory per block 99 Kilobytes 227 Kilobytes

Table 2.1: A simplified version of the technical specifications for the Compute Capa-
bilities 8.9 and 10.x (Nvidia, 2025b). These correspond to the Nvidia Ada Lovelace and
Blackwell microarchitectures.

than they have FP32 compute-resources, performing FP64 operations will take longer.
However, despite these drawbacks, having low occupancy will very likely result in per-
formance degradation while high occupancy will either improve performance or do no
harm otherwise. Ways of achieving high occupancy will be outlined in this section as
most other performance problems can be solved algorithmically.

When starting a kernel, the most important configuration is the number of threads
and thread blocks that need to be started. This is important, as this has other effects
on occupancy as well. In Table 2.1 the most notable limitations are presented that
can affect occupancy. These limitations need to be considered when choosing a kernel
configuration. It is important to note, that depending on the GPU and problem, the
occupancy tuning might differ, and the same approach might perform well on one GPU
but perform poorly on another GPU. Therefore, the things discussed here are only
guidelines.

Tools like Nvidia Nsight Compute7 and Nsight Systems8 are essential for perfor-
mance tuning. Nsight compute also contains an occupancy calculator which takes a
kernel and computes how the configuration performs in terms of occupancy and also
lets the developer try out different configurations (Nvidia, 2025c).

In general, it is important to have as many warps as possible ready for execution.
While this means that a lot of warps could be executed but are not, this is actually
desired. A key feature of GPUs is so-called latency hiding, meaning that while a warp
waits for data to be retrieved for example, another warp ready for execution can now be
run. With low occupancy, and therefore little to no warps waiting for execution, latency
hiding does not work, as now the hardware is idle. As a result, the runtime increases
which also explains why high occupancy is not guaranteed to result in performance
improvements while low occupancy can and often will increase the runtime.

As seen in Table 2.1, there exist different limitations that can impact occupancy.
The number of warps per SM is important, as this means this is the degree of parallelism

7https://developer.nvidia.com/nsight-compute
8https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
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achievable per SM. If due to other limitations, the number of warps per SM is below
the maximum, there is idle hardware. One such limitation is the number of registers per
block and SM. In the case of compute capability 8.9, one SM can handle 32*48 = 1 536
threads. This leaves 64 000/1 536 ≈ 41 registers per thread, which is lower than the
theoretical maximum of 255 registers per thread. Typically, one register is mapped to
one variable in the kernel code, meaning a developer can use up to 41 variables in their
code. However, if the variable needs 64 bits to store its value, the register usage doubles,
as all registers on a GPU are 32-bit. On a GPU with compute capability 10.x a developer
can use up to 64 000/2 048 ≈ 31 registers. Of course a developer can use more registers,
but this results in less occupancy. However, depending on the algorithm using more
registers might be more beneficial to performance than the lower occupancy, in which
case occupancy is not as important. If a developer needs more than 255 registers for
their variables the additional variables will spill into local memory which is, as described
in Section 2.2.1, not desirable.

Additionally, shared memory consumption can also impact the occupancy. If for
example a block needs all the available shared memory, which is almost the same as
the amount of shared memory per SM, this SM can only serve this block. On compute
capability 10.x, this would mean that occupancy would be at maximum 50% as a block
can have up to 1 024 threads while an SM supports up to 2 048 threads. Again, in such
cases it needs to be determined, if the performance gain of using this much shared
memory is worth the lower occupancy.

Balancing these limitations and therefore the occupancy and performance often re-
quires a lot of trial and error with help of the aforementioned tools. In cases where
occupancy is already high and the amount of warps ready for execution is also high,
other areas for performance improvements need to be explored. Algorithmic optimisa-
tion is always a good idea. Some performance improvements can be achieved by altering
the computations to use different parts of the GPU. One of such optimisations is using
FP32 operations wherever possible. Another well suited optimisation is to rewrite the
algorithm to use as many Fused Multiply-Add (FMA) instructions. FMA is a special
floating point instruction, that multiplies two values and adds a third, all in a single
clock cycle (Nvidia, 2025a). However, the result might slightly deviate compared to per-
forming these two operations separately, which means in accuracy sensitive scenarios,
this instruction should be avoided. If the compiler detects a floating point operation
with the FMA structure, it will automatically be compiled to an FMA instruction. To
prevent this, in C++ the developer can call the functions __fadd_ and __fmul_ for
addition and multiplication respectively.

2.2.2 Parallel Thread Execution
While in most cases a GPU can be programmed in a higher level language like C++
or even Julia9, it is also possible to program GPUs with the low level language Parallel
Thread Execution (PTX) developed by Nvidia. A brief overview of what PTX is and
how it can be used to program GPUs is given in this section. Information in this section
is taken from the PTX documentation (Nvidia, 2025d) if not stated otherwise.

PTX defines a virtual machine with an own instruction set architecture (ISA) and
9https://juliagpu.org/

https://juliagpu.org/
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is designed for data-parallel processing on a GPU. It is an abstraction of the underlying
hardware instruction set, allowing PTX code to be portable across Nvidia GPUs. In
order for PTX code to be usable for the GPU, the driver is responsible for compiling
the code to the hardware instruction set of the GPU it is run on. A developer typically
writes a kernel in CUDA using C++, for example, and the Nvidia compiler generates
the PTX code for that kernel. This PTX code is then compiled by the driver once it
is executed. The concepts for programming the GPU with PTX and CUDA are the
same, apart from the terminology which is slightly different. For consistency, the CUDA
terminology will continue to be used.

Syntactically, PTX is similar to assembler style code. Every PTX code must have a
.version directive which indicates the PTX version and is immediately followed by the
.target directive which indicates the compute capability. If the program needs 64-bit
addresses instead of the default 32-bit addresses, the optional .address_size directive
can be used to indicate this. Using 64-bit addresses enables the developer to access
more than 4 GB of memory but also increases register usage, as a 64-bit address must
be stored in two registers.

After these directives, the actual code is written. As each PTX code needs an en-
try point (the kernel) the .entry directive indicates the name of the kernel and the
parameters needed. It is also possible to write helper functions with the .func direc-
tive. Inside the kernel or a helper function, normal PTX code can be written. Because
PTX is very low level, it assumes an underlying register machine, therefore a developer
needs to think about register management. This includes loading data from global or
shared memory into registers if needed. Code for manipulating data like addition and
subtraction generally follow the structure operation.datatype followed by up to four
parameters for that operation. For adding two FP32 values together and storing them
in the register %n, the code looks like the following:

add.f32 %n, 0.1, 0.2;

Loops in the classical sense do not exist in PTX. Instead, a developer needs to define
jump targets for the beginning and end of the loop. The Program in 2.1 shows how a
function with simple loop can be implemented. The loop counts down to zero from the
passed parameter 𝑁 which is loaded into the register %n in line 6. If the value in the
register %n reached zero the loop branches at line 9 to the jump target at line 12 and
the loop has finished. All other used directives and further information on writing PTX
code can be taken from the PTX documentation (Nvidia, 2025d).

2.3 Compilers
Compilers are a necessary tool for many developers. If a developer wants to run their
program it is very likely they need one. As best described by Aho et al. (2006) in their
dragon book, a compiler takes code written by a human in some source language and
translates it into a destination language readable by a computer. This section briefly
explores what compilers are and research done in this old field of computer science.
Furthermore, the topics of transpilers and interpreters are explored, as their use-cases
are very similar.

Aho et al. (2006) and Cooper and Torczon (2022) describe how a compiler can be
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1 .func loop(.param .u32 N)
2 {
3 .reg .u32 %n;
4 .reg .pred %p;
5
6 ld.param.u32 %n, [N];
7 Loop:
8 setp.eq.u32 %p, %n, 0;
9 @%p bra Done;

10 sub.u32 %n, %n, 1;
11 bra Loop;
12 Done:
13 }

Program 2.1: A PTX program fragment depicting how loops can be implemented.

developed, with the latter focusing on more modern approaches. They describe how a
compiler consists of two parts, the analyser, also called frontend, and the synthesiser
also called backend. The frontend is responsible for ensuring syntactic and semantic
correctness and converts the source code into an intermediate representation, an abstract
syntax tree (AST), for the backend. Generating code in the target language, from the
intermediate representation is the job of the backend. This target code can be assembly
or anything else that is needed for a specific use-case. This intermediate representation
also makes it simple to swap out frontends or backends. The Gnu Compiler Collection
GCC (2025) takes advantage of using different frontends to provide support for many
languages including C, C++, Ada and more. Instead of compiling source code for specific
machines directly, many languages compile code for virtual machines instead. Notable
examples are the Java Virtual Machine (JVM) (Lindholm et al., 2025) and the low
level virtual machine (LLVM) (Lattner & Adve, 2004). Such virtual machines provide
a bytecode which can be used as a target language for compilers. A huge benefit of
such virtual machines is the ability for one program to be run on all physical machines
the virtual machine exists for, without the developer needing to change that program
(Lindholm et al., 2025). Programs written for virtual machines are compiled into their
respective bytecode. This bytecode can then be interpreted or compiled to physical
machine code and then be run. According to the JVM specification Lindholm et al.
(2025) the Java bytecode is interpreted and also compiled with a just-in-time (JIT)
compiler to increase the performance of code blocks that are often executed. On the
other hand, the common language runtime (CLR)10, the virtual machine for languages
like C#, never interprets the generated bytecode. As described by Microsoft (2023) the
CLR always compiles the bytecode to physical machine code using a JIT compiler before
it is executed.

2.3.1 Interpreters
Interpreters are a different kind of program for executing source code. Rather than com-
piling the code and executing the result, an interpreter executes the source code directly.

10https://learn.microsoft.com/en-us/dotnet/standard/clr

https://learn.microsoft.com/en-us/dotnet/standard/clr
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Figure 2.5: A simplified overview of the architecture of a compiler.

Languages like Python and JavaScript are prominent examples of interpreted languages,
but also Java, or more precise Java-Bytecode, is also interpreted before it gets compiled
(Lindholm et al., 2025). However, interpreters can not only be used for interpreting pro-
gramming languages. It is also possible for them to be used in GP. Langdon and Banzhaf
(2008) have shown how a SIMD interpreter can be efficiently used for evaluating entire
GP populations on the GPU directly. In a later work Cano and Ventura (2014) further
improved this interpreter. They used the fact that a GP individual represents a tree
which can be split into independent subtrees. These can be evaluated concurrently and
with the help of communication via shared memory, they were able to evaluate the en-
tire tree. With this they achieved a significant performance improvement over previous
implementations. As shown by Dietz and Young (2010), it is even possible to develop an
interpreter that can execute MIMD programs on a SIMD GPU. However, as noted by
the authors, any kind of interpretation comes with an overhead. This means that with
the additional challenges of executing MIMD programs on SIMD hardware, their in-
terpreter, while achieving reasonable efficiency, still suffers from performance problems.
Another field where interpreters can be useful are rule-based simulations. Köster et al.
(2020a) has shown how they implemented a GPU interpreter for such simulations. In
addition with other novel performance improvements in running programs on a GPU,
they were able to gain a speed-up of 4 over non-interpreted implementations. While
publications like Fua and Lis (2020) and Gherardi et al. (2012) have shown, interpreted
languages often trail behind in terms of performance compared to compiled languages,
interpreters per se are not slow. And while they come with performance overhead as
demonstrated by Dietz and Young (2010) and Romer et al. (1996), they can still be a
very fast, easy and powerful alternative for certain tasks.
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2.3.2 Transpilers
With the concepts already mentioned, it is possible to generate executable code from
code written in a programming language. However, sometimes it is desired to convert a
program from one programming language to another and therefore the major difference
between these use-cases is the backend. A popular transpiler example is the TypeScript
transpiler, which transforms TypeScript source code into JavaScript source code (Mi-
crosoft, 2025). Other examples for transpilers are the C2Rust transpiler (Ling et al.,
2022) that transpiles C code into Rust code as well as the PyJL transpiler (Marcelino
& Leitão, 2022) which transpiles Python code into Julia code. Chaber and Ławryńczuk
(2016) proposed a transpiler that takes MATLAB and C code and transforms it into
pure and optimised C code for an STM32 microcontroller. An early example for a tran-
spiler has been developed by Intel (1978) where they built a transpiler for transforming
assembly code for their 8080 CPU to assembly code for their 8086 CPU. Transpilers
can also be used in parallelisation environments, like OpenMP (C.-K. Wang & Chen,
2015). Moses et al. (2023) describe a transpiler, that can transform CUDA code into
highly parallel CPU code, where they found that it performs noticeably better than do-
ing this transformation by hand. When designing complex processors and accelerators,
register-transfer level (RTL) simulations are essential (L.-T. Wang et al., 2009). In a
later study Zhang et al. (2020) have shown how RTL simulations can be performed on
GPUs with a speed-up of 20. This led to D.-L. Lin et al. (2023) developing a transpiler
to transform RTL into CUDA kernels instead of handwriting them. The compared their
results with a CPU implementation running on 80 CPUs, where they found that the
transpiled CUDA version was 40 times faster. Using transpilers for software backend
and business logic has been proposed by Bastidas Fuertes et al. (2023a). Their approach
implemented a programming language that can be transpiled into different program-
ming languages, for usage in a multi-programming-language environment that share
some business logic. In another study, Bastidas Fuertes et al. (2023b) reviewed over 600
publications to map the use of transpilers alongside their implementations in different
fields of research, demonstrating the versatility of transpiler use.



Chapter 3

Concept and Design

To be able to determine whether evaluating mathematical expressions on the GPU is
better suited than on the CPU, two prototypes need to be implemented. More specifi-
cally, a prototype for interpreting these expressions on the GPU, as well as a prototype
that transpiles expressions into PTX code that can be executed by the GPU. The goal
of this chapter, is to describe how these two prototypes can be implemented conceptu-
ally. First the requirements for the prototypes as well as the data they operate on are
explained. This is followed by the design of the interpreter and the transpiler. The CPU
interpreter will not be described, as it already exists.

3.1 Requirements and Data
The main goal of both prototypes or evaluators is to provide a speed-up compared to
the CPU interpreter already in use. However, it is also important to determine which
evaluator provides the most speed-up. This also means that if one of the evaluators is
faster, it is intended to replace the CPU interpreter. Therefore, they must have similar
capabilities, and therefore meet the following requirements:

• Multiple expressions as input.
• All input expressions have the same number of variables (𝑥𝑛), but can have a

different number of parameters (𝑝𝑛).
• The variables are parametrised using a matrix of the form 𝑘 ×𝑁 , where 𝑘 is the

number of variables in the expressions and 𝑁 is the number of data points. This
matrix is the same for all expressions.

• The parameters are parametrised using a vector of vectors. Each vector 𝑣𝑖 corre-
sponds to an expression 𝑒𝑖.

• The following operations must be supported: 𝑥+𝑦, 𝑥−𝑦, 𝑥*𝑦, 𝑥/𝑦, 𝑥𝑦, |𝑥|, log(𝑥),
𝑒𝑥, 1/𝑥 and

√
𝑥. Note that 𝑥 and 𝑦 can either stand for a constant, a variable, a

parameter, or another expression.
• The results of the evaluations are returned in a matrix of the form 𝑘×𝑁𝑒. In this

case, 𝑘 is equal to the 𝑁 of the variable matrix and 𝑁𝑒 is equal to the number of
input expressions.

With this, the required capabilities are outlined. However, for a better understand-
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Figure 3.1: This diagram shows how the input and output looks like and how they
interact with each other.

ing, the input and output data need to be explained further. The first input contains
the expressions that need to be evaluated. These can be of any length and can con-
tain constant values, variables and parameters, all of which are linked together with
the supported operators. In the simplified example shown in Figure 3.1, there are six
expressions 𝑒1 to 𝑒6.

Next is the variable matrix. An entry in this matrix corresponds to one variable in
every expression. The row indicates which variable it holds the value for. For example
the values in row three are used to parameterise the variable 𝑥3. Each column holds a
different set of variables. Each expression must be evaluated using each set of variables.
In the provided example, there are three data points, each containing the values for four
variables 𝑥1 to 𝑥4.

After all expressions have been evaluated using all data points, the results of these
evaluations must be stored in the result matrix. Each entry in this matrix holds the
result of the evaluation of one expression parameterised with one data point. The row
indicates the data point and the column indicates the expression.

The prototypes developed in this thesis, are part of a GP algorithm for symbolic
regression. This means that the expressions that are evaluated, represent parts of the
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search space of all expressions being made up of any combination of allowed operators,
the set of input variables, a set of parameters and constants. This means that the size of
the search space grows exponentially. Exploring this search space by simply generating
expressions, evaluating them once and then generating the next set of expressions leaves
much of their potential hidden. To assist in finding better fitting expressions, param-
eters are introduced. This allows the algorithm to fit the expressions to the data. To
enable this improved search, the prototypes must support not only variables, but also
parameters.

The parameters themselves are unique to each expression, meaning they have a
one-to-one mapping to an expression. Furthermore, as can be seen in Figure 3.1, each
expression can have a different number of parameters, or even no parameters at all.
However, with no parameters, it wouldn’t be possible to perform parameter optimisa-
tion. This is in contrast to variables, where each expression must have the same number
of variables. Because parameters are unique to each expression and can vary in size,
they are not structured as a matrix, but as a vector of vectors.

An important thing to consider, is the volume and volatility of the data itself.
The example shown in Figure 3.1 has been drastically simplified. It is expected, that
there are hundreds of expressions evaluate per GP generation. Each of these expressions
may contain between ten and 50 tokens. A token is equivalent to either a variable, a
parameter, a constant value or an operator.

It can be assumed that typically the number of variables per expression is around
ten. However, the number of data points can increase drastically. It can be considered
that 1 000 data points is the lower limit. On the other hand, 100 000 can be considered
as the upper limit. Considering that one variable takes up 4 bytes of memory and 10
variables are needed per expression, at least 4 * 10 * 1 000 = 40 000 bytes and at most
4 * 10 * 100 000 = 400 000 bytes need to be transferred to the GPU for the variables.
Therefore this

These variables do not change during the runtime of the symbolic regression algo-
rithm. As a result the data only needs to be sent to the GPU once. This means that the
impact of this data transfer is minimal. On the other hand, the data for the parameters
is much more volatile. As explained above, they are used for parameter optimisation
and therefore vary from evaluation to evaluation and need to be sent to the GPU very
frequently. The amount of data that needs to be sent depends on the number of ex-
pressions as well as on the number of parameters per expression. Considering 10 000
expressions that need to be evaluated and an average of two parameters per expression
each requiring 4 bytes of memory, a total of 10 000 * 2 * 4 = 80 000 bytes need to be
transferred to the GPU on each parameter optimisation step. This is comparatively
low, as the GPU is connected via PCI Express with version six allowing transfer rates
of up to 256 GB per second (PCI-SIG, 2025). However, the amount of data is not of
concern but rather the number of data transfers to the GPU, as every transfer has some
overhead and waiting time associated with it.

3.2 Architecture
Based on the requirements and data structure above, the architecture of both proto-
types can be designed. While the requirements only specify the input and output, the
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Figure 3.2: The interpreter has one kernel that is dispatched multiple times, while the
transpiler, has multiple kernels that are dispatched once. This helps to eliminate thread
divergence.

components and workflow also need to be specified. This section aims at giving an
architectural overview of both prototypes, alongside their design decisions.

A design decision that has been made for both prototypes is to split the evaluation
of each expression into a separate kernel or kernel dispatch as seen in Figure 3.2. As
explained in Section 2.2.1, it is desirable to reduce the occurrence of thread divergence
as much as possible. Although the SIMT programming model tries to mitigate the
negative effects of thread divergence, it is still advisable to avoid it when possible. For
this use-case, thread divergence can easily be avoided by not evaluating all expressions
in a single kernel or kernel dispatch. GPUs are able to have multiple resident grids,
with modern GPUs being able to accommodate 128 grids concurrently (Nvidia, 2025b).
One grid corresponds to one kernel dispatch, and therefore allows up-to 128 kernels
to be run concurrently. Therefore, dispatching a kernel for each expression, further
increases GPU utilisation. In the case of the interpreter, having only one kernel that
can be dispatched for each expression, also simplifies the kernel itself. This is because
the kernel can focus on evaluating one expression and does not require additional code
to handle multiple expressions at once. Similarly, the transpiler can also be simplified,
as it can generate many smaller kernels rather than one big kernel. Additionally, the
smaller kernels do not need any branching, because the generated code only needs to
perform the operations as they occur in the expressions themselves. This also reduces
the overhead on the GPU. One drawback of generating a kernel for each expression,
is the generation itself. Especially for smaller data points, it is possible, that the time
it takes to transpile an expression and compile the kernel into machine code is greater
than the time it takes to evaluate it. However, for larger data points this should not be
a concern, especially in parameter optimisation scenarios, where the kernel is re-used
on each parameter optimisation step.
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Figure 3.3: This diagram shows how an expression will be transformed in the pre-
processing step.

3.2.1 Pre-Processing
The first step in both prototypes is the pre-processing step. It is needed, as it simpli-
fies working with the expressions in the later steps. One of the responsibilities of the
pre-processor is to verify that only allowed operators and symbols are present in the
given expressions. Secondly, this step also converts the expression into an intermediate
representation. In essence, the pre-processing step can be compared to the frontend of
a compiler as described in Section 2.3. If new operators are required, the pre-processor
must be extended as well. Otherwise, expressions containing these operators would be
treated as invalid and never reach the evaluator.

The conversion into the intermediate representation transforms the expressions from
infix notation into postfix notation. This further allows the later parts to more easily
evaluate the expressions. One of the major benefits of this notation is the implicit
operator precedence. It allows the evaluators to evaluate the expressions token by token
from left to right, without needing to worry about the correct order of operations. One
token represents either an operator, a constant value, a variable or a parameter. Apart
from the intermediate representation containing the expression in postfix notation, it
also contains information about the types of the tokens themselves. This is all that is
needed for the interpretation and transpilation steps. A simple expression like 𝑥 + 2
would look like depicted in Figure 3.3 after the pre-processing step.

It would have also been possible to perform the pre-processing step on the GPU.
However, pre-processing only one expression can not easily be split into multiple threads,
which means one GPU thread would need to process one expression. As described in
Section 2.2 a single GPU thread is slower than a single CPU thread and as a result means
the processing will also be slower. Furthermore, it wouldn’t make sense to process all
expressions in a single kernel. This would lead to a lot of thread divergence, which essen-
tially means processing one expression after the other. The SIMT programming model
might help with parallelising at least some parts of the processing work. However, the
generated expressions can differ a lot from each other and restricting them to be similar
and therefore SIMT friendly, would likely reduce the overall quality of the symbolic
regression algorithm. Therefore, it does not make sense to perform the processing step
on the GPU.

The already mentioned concept of processing one expression per thread can also
be used on the CPU, which is better designed for this type of work. Concepts such as
caching processed expressions, or caching parts of the processed expressions can also
be employed on the CPU to speed up pre-processing. This would not be possible on
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Figure 3.4: This diagram depicts the coarse-grained workflow of the interpreter. It shows
how the parts interact with each other and with the system it will operate in.

the GPU, because a GPU can not save state between two kernel dispatches. This is a
typical example of code that is better run on the CPU and shows how the CPU and
GPU need to work together and exploit their respective strengths to achieve the best
performance.

3.2.2 Interpreter
The interpreter consists of two parts. The CPU side is the part of the program, that
interacts with both the GPU and the caller. An overview of the components and the
workflow of the interpreter is shown in Figure 3.4. Once the interpreter has received
the expressions, they are pre-processed. This ensures that the expressions are valid,
and that they are transformed into the intermediate representation needed to evaluate
them. The result of this pre-processing step is then sent to the GPU, which performs
the actual interpretation of the expressions. In addition to the expressions, the data for
the variables and parameters must also be sent to the GPU.

Once all the necessary data is present on the GPU, the interpreter kernel can be
dispatched. As previously mentioned, the kernel is dispatched for each expression to
minimise thread divergence. In fact, dispatching the same kernel multiple times for each
expression ensures that there will not occur any thread divergence, as will be explained
later.
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After the GPU has finished evaluating all expressions with all data points, the result
is stored in a matrix on the GPU. The CPU then retrieves the results and returns them
to the caller in the format specified by the requirements.

Evaluating the expressions is relatively straight forward. Because the expressions
are in postfix notation, the actual interpreter just needs to iterate over all the tokens
and perform the appropriate tasks. If the interpreter encounters a binary operator, it
simply needs to read the previous two values and perform the operation specified by
the operator. For unary operators, only the previous value needs to be read. As already
mentioned, expressions in postfix notation implicitly contain the operator precedence,
therefore no look-ahead or other strategies need to be used to ensure correct evaluation.
This also means that each token is visited exactly once and no unnecessary or overhead
work needs to be done. The Algorithm 3.1 shows how the interpreter works. Note that
this is a simplified version, that only works with additions, multiplications, constants
and variables.

Algorithm 3.1: Interpreting an equation in postfix notation
1: procedure Evaluate(expr : PostfixExpression)
2: stack← []
3: while HasTokenLeft(expr) do
4: token← GetNextToken(expr)
5: if token.Type = Constant then
6: Push(stack, token.Value)
7: else if token.Type = Variable then
8: Push(stack, GetVariable(token.Value))
9: else if token.Type = Operator then

10: if token.Value = Addition then
11: right← Pop(stack)
12: left← Pop(stack)
13: Push(stack, left + right)
14: else if token.Value = Multiplication then
15: right← Pop(stack)
16: left← Pop(stack)
17: Push(stack, left * right)
18: StoreResult(Pop(stack))

Handling constants, variables and parameters is very simple. Constants simply need
to be stored on the stack for later use. Variables and parameters also only need to
be stored on the stack. However, their value must first be loaded from the variable or
parameter matrix according to the token value. Since the entire matrices are sent to
the GPU, the index of the variable or parameter set is also needed to load the correct
value. However, for simplicity, this has been omitted from the algorithm.

When an operator token is encountered, the handling becomes more complex. The
value of the token indicates the type of operation to be applied. For binary operators,
the top two values on the stack need to be used as input to the operator. For unary
operators, only the top value of the stack needs to be used as an input. Once the result
has been computed, it must be stored at the top of the stack to be used as an input for
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Figure 3.5: This diagram depicts the coarse-grained workflow of the transpiler. It shows
how the parts interact with each other and with the system it will operate in.

the next operation or the result for this expression.
At the end of the algorithm, the stack contains one last entry. This entry is the value

computed by the expression with the designated data point and parameters. In order
to send this value back to the CPU, it must be stored in the result matrix. The last
statement performs this action. It again has been simplified to omit the index calculation
of the expression and data point needed to store the result at the correct location.

The Algorithm 3.1 in this case resembles the kernel. This kernel will be dispatched
for each expression that needs to be evaluated, to prevent thread divergence. Thread
divergence can only occur on data-dependent branches. In this case, the while loop
and every if and else-if statement contains a data-dependent branch. Depending on
the expression passed to the kernel, the while loop may run longer than for another
expression. Similarly, not all expressions have the same constants, operators, variables or
parameters in the same order, and would therefore cause each thread to take a different
path. However, one expression always has the same constants, operators, variables and
parameter in the same locations, meaning that all threads will take the same path. This
also means that although the interpreter contains many data-dependent branches, these
branches only depend on the expression itself. Because of this, all threads will follow
the same path and will therefore never diverge from one another.
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3.2.3 Transpiler
Similar to the interpreter, the transpiler also consists of a part that runs on the CPU
and a part that runs on the GPU. Looking at the components and workflow of the
transpiler, as shown in Figure 3.5, it is almost identical to the interpreter. However, the
key difference between the two, is the additional code generation, or transpilation step.
Apart from that, the transpiler also needs the same pre-processing step and also the
GPU to evaluate the expressions. However, the kernels generated by the transpiler work
very differently to the kernel for the interpreter. The difference between these evaluators
will be explained later.

Before the expressions can be transpiled into PTX code, they have to be pre-
processed. As already described, this step ensures the validity of the expressions and
transforms them into the intermediate representation described above. As with the in-
terpreter, this also simplifies the code generation step. By transforming the expressions
into postfix notation, the code generation follows a similar pattern to the interpretation
already described.

Algorithm 3.2 shows how the transpiler takes an expression, transpiles it and then
returns the finished code. It can be seen that the while loop is largely the same as
the while loop of the interpreter. The main difference is in the operator branches, be-
cause now code needs to be generated instead of computing the result of the expression.
Therefore, the branches themselves call their designated code generation function, such
as GetAddition. This function returns the PTX code responsible for the addition. How-
ever, this function must return more than just the code that performs the addition.
When executed, this addition also returns a value which will be needed as an input by
other operators. Therefore, not only the code fragment must be returned, but also the
reference to the result.

This reference can then be put on the stack for later use, the same way the interpreter
stores the value for later use. The code fragment must also be added to the already
generated code so that it can be returned to the caller. As with the interpreter, there is
a final value on the stack when the loop has finished. Once the code has been executed,
this value is the reference to the result of the expression. This value then needs to be
stored in the result matrix, so that it can be retrieved by the CPU after all expressions
have been executed. Therefore, a final code fragment must be generated to handle the
storage of this value in the result matrix. This fragment must then be added to the code
already generated, and the transpilation process is complete.

The code generated by the transpiler is the kernel for the transpiled expressions.
This means that a new kernel must be generated for each expression that needs to be
evaluated. This is in contrast to the interpreter, which has one kernel and dispatches it
once for each expression. Generating one kernel per expression results in a much simpler
kernel, which allows the kernel to focus on evaluating the postfix expression. There is no
overhead work such as branching or managing a stack. However, this overhead is now
shifted to the transpilation step on the CPU which can be seen in Algorithm 3.2. There
is also a noticeable overhead in that a kernel has to be generated for each expression. In
cases like parameter optimisation, many of the expressions would be transpiled multiple
times as the transpiler is called multiple times with the same expressions.

Both the transpiler and the interpreter have their respective advantages and disad-
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Algorithm 3.2: Transpiling an equation in postfix notation
1: procedure Transpile(expr : PostfixExpression): String
2: stack← []
3: code← “”
4: while HasTokenLeft(expr) do
5: token← GetNextToken(expr)
6: if token.Type = Constant then
7: Push(stack, token.Value)
8: else if token.Type = Variable then
9: (codeFragment, referenceToValue) ← GetVariable(token.Value)

10: Push(stack, referenceToValue)
11: Append(code, codeFragment)
12: else if token.Type = Operator then
13: if token.Value = Addition then
14: right← Pop(stack)
15: left← Pop(stack)
16: (referenceToValue, codeFragment)← GetAddition(left, right)
17: Push(stack, referenceToValue)
18: Append(code, codeFragment)
19: else if token.Value = Multiplication then
20: right← Pop(stack)
21: left← Pop(stack)
22: (referenceToValue, codeFragment)← GetMultiplication(left, right)
23: Push(stack, referenceToValue)
24: Append(code, codeFragment)
25: codeFragment← GenerateResultStoring(Pop(stack))
26: Append(code, codeFragment)

return code

vantages. While the interpreter puts less load on the CPU, the GPU has to perform
more work. Much of this work involves branching or managing a stack, and therefore
involves many instructions that are not used to evaluate the expression itself. However,
this overhead can be mitigated by the fact, that all this work is performed in parallel
rather than sequentially.

On the other hand, the transpiler performs more work on the CPU. The kernels
are much simpler, and most of the instructions are used to evaluate the expressions
themselves. Furthermore, as explained in Section 2.2.2, any program running on the
GPU, must be transpiled into PTX code before the driver can compile it into machine
code. Therefore, the kernel written for the interpreter, must also be transpiled into PTX
and then be compiled. However, this needs to be done only once, while for the transpiler
this needs to be done for each expression. Since the generated code is tailored to evaluate
expressions and not to generate generic code, this means the kernels are simpler and
can be transpiled and compiled faster. The overhead of transpiling and compiling the
expressions is further mitigated by re-using the compiled kernels during the parameter
optimisation step.



Chapter 4

Implementation

This chapter focuses on the implementation phase of the thesis, building upon the
concepts and designs previously discussed. It begins with an overview of the technologies
employed for both the CPU and GPU parts of the prototypes. This is followed by
a description of the pre-processing or frontend phase. The chapter concludes with a
detailed overview of the core components, the interpreter and the transpiler.

4.1 Technologies
This section describes the technologies used for both the CPU side of the prototypes
and the GPU side. The rationale behind these choices, including consideration of their
performance implications, is presented. In addition, the hardware limitations imposed
by the choice of GPU technology are outlined.

4.1.1 CPU side
Both prototypes were implemented using the Julia programming language. It was chosen
mainly, because the current symbolic regression algorithm is also implemented in Julia.
Being a high-level programming language, with modern features such as a garbage-
collector (GC), support for meta-programming and dynamic typing, it also offers great
convenience to the developer.

More interestingly however, is the high performance that can be achieved with this
language. It is possible to achieve high performance despite the supported modern fea-
tures, which are often deemed to be harmful to performance. Bezanson et al. (2017)
have shown how Julia can provide C-like performance while supporting the developer
with modern quality of life features. The ability of Julia to be used in high performance
computing scenarios and to be competitive with C has been demonstrated by W.-C.
Lin and McIntosh-Smith (2021). This shows how Julia is a good and valid choice for
scenarios where developer comfort and C-like performance are needed.

4.1.2 GPU side
In addition to a programming language for the CPU, a method for programming the
GPU is also required. For this purpose, the CUDA API was chosen. While CUDA offers

31



4. Implementation 32

robust capabilities, it is important to note that it is exclusively compatible with Nvidia
GPUs. An alternative would have been OpenCL, which provides broader compatibility
by supporting GPUs from Nvidia, AMD and Intel. However, considering Nvidia’s signif-
icant market share and the widespread adoption of CUDA in the industry, the decision
was made to use CUDA.

A typical CUDA program is primarily written C++ and Nvidia also provides their
CUDA compiler nvcc1 for C and C++ and their official CUDA programming guide
(Nvidia, 2025b) also uses C++ for code examples. It is also possible to call C++ code
from within Julia. This would allow for writing the kernel and interaction with the GPU
in C++, leveraging the knowledge built up in the industry over several years.

CUDA and Julia

Instead of writing the kernel in C++ and calling it from Julia, a much simpler and
effective alternative is available. The Julia package CUDA.jl2 enables a developer to
write a kernel in Julia similar to how a kernel is written in C++ with CUDA. One
drawback of using CUDA.jl however, is the fact that it is much newer compared to
CUDA and therefore does not have years of testing and bug fixing in its history, which
might be a concern for some applications. Apart from writing kernels with CUDA.jl, it
also offers a method for interacting with the driver to compile PTX code into machine
code. This is a must-have feature as otherwise, it wouldn’t have been possible to fully
develop the transpiler in Julia.

Additionally, the JuliaGPU initiative3 offers a collection of additional packages to
enable GPU development for AMD, Intel and Apple and not just for Nvidia. However,
CUDA.jl is also the most mature of the available implementations, which is another
reason why CUDA has been chosen instead of for example OpenCL.

Again, the question arises as to whether the performance of CUDA.jl is sufficient for
it to be used as an alternative to C++ and CUDA. Studies by Besard et al. (2019a),
Faingnaert et al. (2022), and W.-C. Lin and McIntosh-Smith (2021) have demonstrated,
that CUDA.jl provides sufficient performance. They found that, in some cases, CUDA.jl
performed better than the same algorithm implemented in C and C++, and that it is on
par otherwise. These results provide the confidence, that Julia alongside CUDA.jl is a
good choice for leveraging the performance of GPUs to speed up expression evaluation.

4.2 Pre-Processing
The pre-processing or frontend step is very important. As already explained in Chapter
3, it is responsible for ensuring that the given expressions are valid and that they
are transformed into an intermediate representation. This section aims to explain how
the intermediate representation is implemented, as well as how it is generated from a
mathematical expression.

1https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
2https://cuda.juliagpu.org/
3https://juliagpu.org/

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://cuda.juliagpu.org/
https://juliagpu.org/
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4.2.1 Intermediate Representation
The intermediate representation is mainly designed to be lightweight and easily trans-
ferrable to the GPU. Since the interpreter runs on the GPU, this was a very important
consideration. Because the transpilation process is done on the CPU, and is therefore
very flexible in terms of the intermediate representation, the focus lied mainly on being
efficient for the interpreter.

The intermediate representation cannot take any form. While it has already been
defined that expressions are converted to postfix notation, there are several ways to
store the data. The first logical choice is to create an array where each entry represents
a token. On the CPU it would be possible to define each entry as a pointer to the token
object. Each of these objects could be of a different type, for example one object that
holds a constant value while another object holds an operator. In addition, each of these
objects could contain its own logic about what to do when it is encountered during the
evaluation process. However, on the GPU, this is not possible, as an array entry must
hold a value and not a pointer to another memory location. Furthermore, even if it were
possible, it would not be a feasible solution. As explained in Section 2.2.1, when loading
data from global memory, larger chunks are retrieved at once. If the data is scattered
across the GPU’s global memory, a lot of unwanted data will be transferred. This can
be seen in Figure 4.1, where if the data is stored sequentially, far fewer data operations
and far less data in general needs to be transferred.

Due to this, and the fact that the GPU does not allow pointers, an alternative
approach is required. Rather than storing pointers to objects of different types in an
array, it is possible to store objects of a single type. As described in Section 3.2.1, the
objects thus contain the type of the stored value and the value itself. The four types of
values that need to be stored in this object differ significantly in terms of the value they
represent. The following paragraphs explain how these values can be stored in objects
of a single type.

Variables and parameters are very simple to store. Because they represent indices
to the variable matrix or the parameter vector, this (integer) index can be stored as is
in the value property of the object. The type can then be used to determine whether it
is an index to a variable or a parameter access.

Constants are also very simple, as they represent a single 32-bit floating point value.
However, due to the variables and parameters, the value property is already defined as
an integer and not as a floating point number. Unlike in dynamically typed languages
such as Python, where every number is a floating point number, in Julia they these have
different types and therefore cannot be stored in the same property. Creating a second
property for constants only is not feasible, as this would introduce four bytes per object
that need to be sent to the GPU, which most of the time does not contain a defined
value.

To avoid sending unnecessary bytes, Julia provides a mechanism called reinterpret
that can be used. This allows the bits of a variable of one type, to be treated as the bits
of a different type. For example, the bits used to represent a floating point number are
then interpreted as an integer and can be stored in the same property. On the GPU, the
same concept can be applied to reinterpret the integer value as a floating point value
for further calculations. This is also the reason why the original type of the value needs
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Figure 4.1: Loading data from global memory on the GPU always loads 32, 64 or 128
bytes (see Section 2.2.1). If pointers were supported and data would be scattered around
global memory, many more data load operations would be required. Additionally, much
more unwanted data would be loaded.

to be stored alongside the value in order for the stored value to be interpreted and the
expressions to be evaluated correctly.

Operators are very different from variables, parameters and constants. Because they
represent an operation rather than a value, a different way of storing them is required.
An operator can be uniquely mapped to a number to identify the operation. For ex-
ample, if the addition operator is mapped to the integer 1. Consequently, when the
evaluator encounters an object of type operator and a value of 1, it can determine the
corresponding operation to perform. This can be done for all operators which means
it is possible to store them in the same object structure. The type must be specified
to be an operator and the value can be stored without needing to reinterpret it. The
mapping of an operator to a value is commonly referred to as an operation code, or
opcode, ensuring that each operator is uniquely identifiable.

With this, the intermediate representation is defined. Figure 4.2 shows how a simple
expression would look after the pre-processing step. Note that the bit representation of
the value 2.5 has been reinterpreted as an integer, resulting in the seemingly random
value.
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Figure 4.2: The expression 𝑥1 + 2.5 after it has been converted to the intermediate
representation. Note that the constant value 2.5 stores a seemingly random value due to
the bits being reinterpreted as an integer.

4.2.2 Processing
Now that the intermediate representation has been defined, the processing step can be
implemented. This section describes the structure of the expressions and how they are
processed. It also explains the process of parsing the expressions to ensure their validity
and converting them into the intermediate representation.

Expressions

With the pre-processing step, the first modern feature of Julia has been used. As already
mentioned, Julia provides extensive support for meta-programming, which is important
for this step. Julia represents its own code as a data structure, which allows a developer
to manipulate the code at runtime. The code is stored in the so-called Expr object as an
Abstract Syntax Tree (AST), which is the most minimal tree representation of a given
expression. As a result, mathematical expressions can also be represented as such an
Expr object instead of a simple string. This is a major benefit, because these expressions
can then be easily manipulated by the symbolic regression algorithm. Because of this,
the pre-processing step requires the expressions to be provided as an Expr object instead
of a string.

Another major benefit of the expressions being stored in the Expr object and there-
fore as an AST, is the included operator precedence. Because it is a tree where the leaves
are the constants, variables or parameters (also called terminal symbols) and the nodes
are the operators, the correct result will be calculated when evaluating the tree from
bottom to top. As can be seen in Figure 4.3, the expression 1 + 𝑥1 log(𝑝1), when parsed
as an AST, contains the correct operator precedence. First the bottom most subtree
log(𝑝1) must be evaluated before the multiplication, and after that, the addition can be
evaluated.

It should be noted however, that Julia stores the tree as a list of arrays to allow a
node to have as many children as necessary. For example the expression 1 + 2 + · · ·+ 𝑛
contains only additions, which is a commutative operation, meaning that the order of
operations is irrelevant. The AST for this expression would contain the operator at the
first position in the array and the values at the following positions. This ensures that
the AST is as minimal as possible.
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Figure 4.3: The AST for the expression 1 + 𝑥1 log(𝑝1) as generated by Julia. Some
additional details Julia includes in its AST have been omitted as they are not relevant.

Conversion into the Intermediate Representation

To convert the AST of an expression into the intermediate representation, a top-down
traversal of the tree is required. The steps for this are as follows:

1. Extract the operator and convert it to its opcode for later use.
2. Convert all constants, variables and parameters and operators to the object (ex-

pression element) described in Section 4.2.1.
3. Append the expression elements to the postfix expression.
4. If the operator is a binary operator and there are more than two expression el-

ements, append the operator after the first two elements and then after each
element.

5. If a subtree exists, apply all previous steps and append it to the existing postfix
expression.

6. Append the operator
7. Return the generated postfix expression/intermediate representation.
The validation of the expression is performed throughout the conversion process.

Validating that only correct operators are used is performed in step 1. To be able to
convert the operator to its corresponding opcode, it must be validated that an opcode
exists for it, and therefore whether it is valid or not. Similarly, converting the tokens
into an expression element object ensures that only variables and parameters in the
correct format are present in the expression. This is handled in step 2.

As explained above, a node of a binary operator can have 𝑛 children. In these
cases, additional handling is required to ensure correct conversion. This handling is
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summarised in step 4. Essentially, the operator must be added after the first two ele-
ments, for each subsequent element, the operator must also be added. The expression
1 + 2 + 3 + 4 is converted to the AST + 1 2 3 4 and without step 4 the postfix expression
would be 1 2 3 4 +. If the operator is added after the first two elements and then after
each subsequent element, the correct postfix expression 1 2 + 3 + 4 + will be generated.

Each subtree of the AST is its own separate AST, which can be converted to postfix
notation in the same way the whole AST can be converted. This means that the algo-
rithm only needs to be able to handle leave nodes, and when it encounters a subtree,
it recursively calls itself to convert the remaining AST. Step 5 indicates this recursive
behaviour.

While the same expression usually occurs only once, sub-expressions can occur mul-
tiple times. In the example in Figure 4.3, the whole expression 1 + 𝑥1 log(𝑝1) is unlikely
to be generated more than once by the symbolic regression algorithm. However, the
sub-expression log(𝑝1) is much more likely to be generated multiple times. This means
that the generation of the intermediate representation for this subtree only needs to be
done once and can be reused later. Therefore, a cache can be used to store the inter-
mediate representation for this sub-expression and access it again later to eliminate the
conversion overhead.

4.3 Interpreter
The implementation of the interpreter is divided into two main components, the CPU-
based control logic and the GPU-based interpreter as outlined in the Concept and Design
chapter. This section aims to describe the technical details of these components. First the
CPU-based control logic will be discussed. This component handles the communication
with the GPU and is the entry point which is called by the symbolic regression algorithm.
Following this, the GPU-based interpreter will be explored, highlighting the specifics of
developing an interpreter on the GPU.

An overview of how these components interact with each other is outlined in Figure
4.4. The parts of this figure are explained in detail in the following sections.

4.3.1 CPU Side
The interpreter is given all the expressions it needs to interpret as an input. Addition-
ally, it needs the variable matrix as well as the parameters for each expression. All
expressions are passed to the interpreter as an array of Expr objects, as they are needed
for the pre-processing step or the frontend. The first loop as shown in Figure 4.4, is
responsible for sending the expressions to the frontend to be converted into the inter-
mediate representation. After this step, the expressions are in the correct format to be
sent to the GPU and the interpretation process can continue.

Data Transfer

Before the GPU can start with the interpretation, the data needs to be present on
it. Because the variables are already in matrix form, transferring the data is fairly
straightforward. Memory must be allocated in the global memory of the GPU and then



4. Implementation 38

Figure 4.4: The sequence diagram of the interpreter.

be copied from RAM into the allocated memory. Allocating memory and transferring
the data to the GPU is handled implicitly by the CuArray type provided by CUDA.jl.

To optimise the interpreter for parameter optimisation workloads, this step is per-
formed before it is called. Although, the diagram includes this transmission for com-
pleteness, it is important to note that the variables never change, as they represent the
observed inputs of the system that is being modelled by the symbolic regression algo-
rithm. As a symbolic regression algorithm is usually implemented with GP, there are
many generations that need to be evaluated. Therefore, re-transmitting the variables
for each generation is inefficient. By transmitting the variables once before the symbolic
regression algorithm begins, additional performance gains are very likely. However, this
approach would require modifying the symbolic regression algorithm, which is the rea-
son this optimisation has not been applied. Nonetheless, if needed it is still possible to
modify the implementation at a later stage with minimal effort.
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1 function convert_to_matrix(vecs::Vector{Vector{T}}, invalidElement::T)::Matrix{T}
where T

2 maxLength = get_max_inner_length(vecs)
3
4 # Pad the shorter vectors with the invalidElement to make all equal length
5 paddedVecs = [vcat(vec, fill(invalidElement, maxLength - length(vec))) for vec in

vecs]
6 vecMat = hcat(paddedVecs...) # transform vector of vectors into column-major

matrix
7
8 return vecMat
9 end

10
11 function get_max_inner_length(vecs::Vector{Vector{T}})::Int where T
12 return maximum(length.(vecs))
13 end
14

Program 4.1: A Julia program fragment depicting the conversion from a vector of vectors
into a matrix of the form 𝑘 ×𝑁 .

Once the variables are transmitted, the parameters must also be transferred to the
GPU. Unlike the variables, the parameters are stored as a vector of vectors. In order
to transmit the parameters efficiently, they also need to be put in a matrix form. The
matrix needs to be of the form 𝑘×𝑁 , where 𝑘 is equal to the length of the longest inner
vector and 𝑁 is equal to the length of the outer vector. This ensures that all values can
be stored in the matrix. It also means that if the inner vectors are of different lengths,
some extra unnecessary values will be transmitted, but the overall benefit of treating
them as a matrix outweighs this drawback. The Program 4.1 shows how this conversion
can be implemented. Note that it is required to provide an invalid element. This ensures
defined behaviour and helps with finding errors in the code. After the parameters have
been brought into matrix form, they can be transferred to the GPU the same way the
variables are transferred.

Similar to the parameters, the expressions are also stored as a vector of vectors.
The outer vector contains each expression, while the inner vectors hold the expres-
sions in their intermediate representation. Therefore, this vector of vectors also needs
to be brought into matrix form following the same concept as the parameters. To sim-
plify development, the special opcode stop has been introduced, which is used for the
invalidElement in Program 4.1. As seen in Section 4.3.2, this element is used to de-
termine if the end of an expression has been reached during the interpretation process.
This removes the need for additional data to be sent which stores the length of each
expression to determine if the entire expression has been interpreted or not. Therefore,
a lot of overhead can be reduced.

Once the conversion into matrix form has been performed, the expressions are trans-
ferred to the GPU. Just like with the variables, the expressions remain the same over
the course of the parameter optimisation part. Which is the reason they are transferred
to the GPU before the interpreter is called, reducing the number of unnecessary data
transfers.
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Figure 4.5: The expressions, variables and parameters as they are stored in the GPUs
global memory. Note that while on the CPU they are stored as matrices, on the GPU,
they are only three arrays of data. The thick lines represent, where a new column and
therefore a new set of data begins.

Only raw data can be sent to the GPU, which means that meta information about
the data layout is missing. The matrices are represented as flat arrays, which means they
have lost their column and row information. This information must be sent separately
to inform the kernel about the dimensions of the expressions, variables and parameters.
Otherwise, the kernel does not know at which memory location the second data point is
stored for example, as it does not know how large a single set is. Figure 4.5 shows how
the data is stored without any information about the rows or columns of the matrices.
The thick lines help to identify where a new column, and therefore a new set of data
begins. However, the GPU has no knowledge of this and therefore the meta information
must be transferred separately to ensure that the data is accessed correctly.

In addition to the already described data that needs to be sent, one more step is
required that has not been included in the Sequence Diagram 4.4. Global memory must
be allocated, that allows the results of the evaluation to be stored. Without this, the
kernel would not know where to store the interpretation results and the CPU would not
know from which memory location to read the results from. Therefore, enough global
memory needs to be allocated beforehand so that the results can be stored and retrieved
after all kernel executions have finished.

Kernel Dispatch

Once all the data is present on the GPU, the CPU can dispatch the kernel for each
expression. This dispatch requires parameters that specify the number of threads and
their organisation into thread blocks. In total, one thread is required for each data
point and therefore the grouping into thread blocks is the primary variable. Taking into
account the constraints explained in Section 2.2.1, this grouping needs to be tuned for
optimal performance. The specific values alongside the methodology for determining
these values will be explained in Chapter 5.

In addition, the dispatch parameters also include the pointers to the location of
the data allocated and transferred above, as well as the index of the expression to be
interpreted. Since all expressions and parameters are sent to the GPU at once, this
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index ensures that the kernel knows where in memory to find the expression it needs
to interpret and which parameter set it needs to use. After the kernel has finished, the
result matrix needs to be read from the GPU and passed back to the symbolic regression
algorithm.

Crucially, dispatching a kernel is an asynchronous operation, which means that the
CPU does not wait for the kernel to finish before continuing. This allows the CPU to
dispatch all kernels at once, rather than one at a time. As explained in Section 3.2,
a GPU can have multiple resident grids, meaning that the dispatched kernels can run
concurrently, reducing evaluation time. Only once the result matrix is read from the
GPU does the CPU have to wait for all kernels to finish execution.

4.3.2 GPU Side
With the GPU’s global memory containing all the necessary data and the kernel being
dispatched, the interpretation process can begin. Before interpreting an expression, the
global thread ID must be calculated. This step is crucial because each data point is
assigned to a unique thread. Therefore, the global thread ID determines which data
point should be used for the current interpretation instance.

Moreover, the global thread ID ensures that excess threads do not perform any work.
As otherwise these threads would try to access a data point that does not exist and
therefore would lead to an illegal memory access. This is necessary because the number
of required threads often does not align perfectly with the number of threads per block
multiplied by the number of blocks. If for example 1031 threads are required, then at
least two thread blocks are needed, as one thread block can hold at most 1024 threads.
Because 1031 is a prime number, it can not be divided by any practical number of
thread blocks. If two thread blocks are allocated, each holding 1024 threads, a total
of 2048 threads is started. Therefore, the excess 2048 − 1031 = 1017 threads must be
prevented from executing. By using the global thread ID and the number of available
data points, these excess threads can be easily identified and terminated early in the
kernel execution.

Afterwards the stack for the interpretation can be created. It is possible to dynam-
ically allocate memory on the GPU, which enables a similar programming model as on
the CPU. Winter et al. (2021) have compared many dynamic memory managers and
found, that the performance impact of them is rather small. However, if it is easily
possible to use static allocations, it still offers better performance. In the case of this
thesis, it is easily possible which is the reason why the stack has been chosen to have
a static size. Because it is known that expressions do not exceed 50 tokens, including
the operators, the stack size has been set to ten, which should be more than enough to
hold the values and partial results, even in the worst case. It is very unlikely that ten
values must be stored before a binary operator is encountered that reduces the number
of values on the stack. Therefore, a stack size of ten should be sufficient, however it is
possible to increase the stack size if needed.

Main Loop

Once everything is initialised, the main interpreter loop starts interpreting the expres-
sion. Because of the intermediate representation, the loop simply iterates through the
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expression from left to right. On each iteration the type of the current token is checked,
to decide which operation to perform.

If the current token type matches the stop opcode, the interpreter knows that it is
finished. This simplicity is the reason why this opcode was introduced, as mentioned
above.

More interestingly is the case, where the current token corresponds to an index to
either the variable matrix, or the parameter matrix. In this case, the token’s value is
important. To access one of these matrices, the correct starting index of the set must
first be calculated. As previously explained, information about the dimensions of the
data is lost during transfer. At this stage, the kernel only knows the index of the first
element of either matrix, which set to use for this evaluation, and the index of the value
within the current set. However, the boundaries of these sets are unknown. Therefore,
the additionally transferred data about the dimensions is used in this step to calculate
the index of the first element in each set. With this calculated index and the index
stored in the token, the correct value can be loaded by adding the token value to the
index of the first element of the set. After the value has been loaded, it is pushed to the
top of the stack for later use.

Constants work very similarly in that the token value is read and added to the top
of the stack. However, the constants have been reinterpreted from floating-point values
to integers for easy transfer to the GPU. This operation must be reversed before adding
the value to the stack as otherwise the wrong values would be used for evaluation.

Evaluating the expression is happening if the current token is an operator. The
token’s value, which serves as the opcode, determines the operation that needs to be
performed. If the opcode represents a unary operator, only the top value of the stack
needs to be popped for the operation. The operation is then executed on this value and
the result is pushed back to the stack. On the other hand, if the opcode represents a
binary operator, the top two values of the stack are popped. These are then used for
the operation, and the result is subsequently pushed back onto the stack.

Support for ternary operators could also be easily added. An example of a ternary
operator that would help improve performance would be the GPU supported Fused
Multiply-Add (FMA) operator. While this operator does not exist in Julia, the frontend
can generate it when it encounters a sub-expression of the form 𝑥 * 𝑦 + 𝑧. Since this
expression performs the multiplication and addition in a single clock cycle instead of
two, it would be a feasible optimisation. However, detecting such sub-expressions is
complicated, which why it is not supported in the current implementation.

Once the interpreter loop has finished, the result of the evaluation must be stored in
the result matrix. By using the index of the current expression, as well as the index of
the current data point (the global thread ID) it is possible to calculate the index where
the result must be stored. The last value on the stack is the result, which is stored in
the result matrix at the calculated location.

4.4 Transpiler
Unlike the interpreter, the transpiler primarily operates on the CPU, with only a minor
GPU-based component. This is because the transpiler must generate entire PTX ker-
nels from Julia expressions, rather than simply executing a pre-written kernel like the
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Figure 4.6: The sequence diagram of the transpiler.

interpreter. Similar to the interpreter, the CPU side of the transpiler manages communi-
cation with both the GPU and the symbolic regression algorithm. This section provides
a detailed overview of the transpiler’s functionality.

An overview of how the transpiler interacts with the frontend and GPU is outlined
in Figure 4.6. The parts of this figure are explained in detail in the following sections.

4.4.1 CPU Side
After the transpiler has received the expressions to be transpiled, it first sends them
to the frontend for processing. Once an expression has been processed, it is sent to
the transpiler backend which is explained in more detail Section 4.4.2. The backend is
responsible for generating the kernels. When finished, each expression is transpiled into
its own kernel written in PTX code.

Data Transfer

Data is sent to the GPU in the same way it is sent in the interpreter. The variables
are sent as they are, while the parameters are again brought into matrix form. Memory
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1 # Dispatching the interpreter kernel
2 for i in eachindex(exprs)
3 numThreads = ...
4 numBlocks = ...
5
6 @cuda threads=numThreads blocks=numBlocks fastmath=true interpret(cudaExprs,

cudaVars, cudaParams, cudaResults, cudaAdditional)
7 end
8
9 # Dispatching the transpiled kernels

10 for kernelPTX in kernelsPTX
11 # Create linker object, add the code and compile it
12 linker = CuLink()
13 add_data!(linker, "KernelName", kernelPTX)
14 image = complete(linker)
15
16 # Get callable function from compiled result
17 mod = CuModule(image)
18 kernel = CuFunction(mod, "KernelName")
19
20 numThreads = ...
21 numBlocks = ...
22
23 # Dispatching the kernel
24 cudacall(kernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars,

cudaParams, cudaResults; threads=numThreads, blocks=numBlocks)
25 end

Program 4.2: A Julia program fragment showing how the transpiled kernels need to be
dispatched as compared to the interpreter kernel

must also be allocated for the result matrix. Unlike the interpreter however, only the
variables and parameters need to be sent to the GPU. The variables are again sent
before the parameter optimisation step to reduce the number of data transfers.

Because each expression is represented by its own kernel, there is no need to transfer
the expressions themselves. Moreover, there is also no need to send information about
the layout of the variables and parameters to the GPU. The reason for this is explained
in the transpiler backend section below.

Kernel Dispatch

Once all the data is present on the GPU, the transpiled kernels can be dispatched.
Dispatching the transpiled kernels is more involved than dispatching the interpreter
kernel. Program 4.2 shows the difference between dispatching the interpreter kernel
and the transpiled kernels. An important note, is that the transpiled kernels must be
manually compiled into machine code. To achieve this, CUDA.jl provides functionality
to instruct the driver to compile the PTX code. The same process of creating PTX code
and compiling it must also be done for the interpreter kernel, however, this is done by
CUDA.jl automatically when calling the @cuda macro in line 6.

Similar to the interpreter, the frontend and backend are executed before the parame-
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ter optimisation step to improve the runtime. Each kernel is compiled into machine code
after it has been generated to ensure, as little work as possible needs to be done during
the parameter optimisation loop. However, as will be explained in Chapter 5, storing
the compiled kernels is very memory intensive. This means that if many expressions
need to be evaluated at once, a lot of memory is required.

After all kernels have been dispatched, the CPU waits for the kernels to complete
their execution. Once the kernels have finished, the result matrix is read from global
memory into system memory. The results can then be returned to the symbolic regres-
sion algorithm.

4.4.2 Transpiler Backend
The transpiler backend is responsible for creating a kernel from an expression in its
intermediate representation. Transpiling an expression is divided into several parts,
these parts are as follows:

• Register management
• Generating the header and kernel entry point
• Ensuring that only the requested amount of threads is performing work
• Generating the Code for evaluating the expression and storing the result
PTX assumes a register machine, which means that a developer has to work with a

limited number of registers. This also means that the transpiler has to define a strategy
for managing these registers. The second and third parts are rather simple and can be
considered as overhead code. Finally, the last part is the main part of the generated
kernel. It contains the code to load variables and parameters, evaluate the expression
and store the result in the result matrix. All parts are explained in the following sections.

Register Management

Register management is a crucial part of the transpiler as it is important to balance
register usage with occupancy and performance. Aho et al. (2006) and Cooper and Torc-
zon (2022) describe techniques for efficient register management, especially for machines
with few registers and register usage by convention on the CPU. On the GPU however,
there are many more registers available, all of which can be used as needed without
restrictions.

To allow for maximum occupancy and avoid spilling registers into local memory, the
transpiler tries to reuse as many registers as possible. Furthermore, allocating and using
a register in PTX is very similar to using variables in high level code, as they represent
virtual registers. Therefore, much of the complexity of managing registers is handled by
the PTX compiler of the driver.

Because much of the complexity of managing registers is hidden by the compiler, or
does not apply in this scenario, it is implemented very simple. If a register is needed at
any point in the transpilation process, it can be requested by the register manager. A
register must be given a name and the manager uses this name to determine the type of
this register. For example, if the name of the register is f, it is assumed to be an FP32
register. Several naming conventions exist to ensure that the register is of the correct
data type. The manager then returns the identifying name of the register, which is used
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to access it. The identifying name, is the name given as an input and a zero-based
number that is incremented by one for each successive call.

PTX requires that the registers are defined before they are used. Therefore, after
the transpiler has finished generating the code, the registers must be defined at the top
of the kernel. As the manager has kept track of the registers used, it can generate the
code to allocate and define the registers. If the kernel only uses five FP32 registers, the
manager would generate the code .reg .f32 %f<5>;. This will allocate and define the
registers %f0 through %f4.

Header and Entry Point

Each PTX program must begin with certain directives in order to compile and use that
program correctly. The first directive must be the .version directive. It indicates which
PTX version the code was written for, to ensure that it is compiled with the correct
tools in the correct version. Following the .version directive is the .target directive,
which specifies the target hardware architecture.

Once these directives have been added to the generated code, the entry point to the
kernel can be generated. It contains the name of the kernel, as well as all parameters
that are passed to it, such as the pointers to the variable, parameter and result matrix.
The kernel name is important as it is required by the CPU to dispatch it.

When the entry point is generated, the PTX code for loading the parameters into the
kernel is also generated. This removes the need to iterate over the kernel parameters a
second time. Loading the parameters into the kernel is necessary because it is not possi-
ble to address these values directly. Nvidia (2025d) states that addresses in the parame-
ter state space can only be accessed using the ld.param instruction. Furthermore, since
all three matrices are stored in global memory, the parameter address must be converted
from parameter state space to global state space using the cvta.to.global.datatype
instruction.

Guard Clause

As explained in Section 4.3.2, the guard clause ensures that any excess threads do not
participate in the evaluation. The following code shows what this guard clause looks
like when the kernel is written with Julia and CUDA.jl:

1 function my_kernel(nrOfVarSets::Int32)
2 threadId = (blockIdx().x - 1) * blockDim().x + threadIdx().x
3 if threadId > nrOfVarSets
4 return
5 end
6 # remaining kernel
7 end

This can be translated into the following PTX code fragment:
1 mov.u32 %r3, %ntid.x; // r3 = blockIdx().x - 1
2 mov.u32 %r4, %ctaid.x; // r4 = blockDim().x
3 mov.u32 %r5, %tid.x; // r5 = threadIdx().x
4
5 mad.lo.s32 %r1, %r3, %r4, %r5; //r1 = r3 * r4 + r5
6 setp.ge.s32 %p1, %r1, %r2; // p1 = r1 >= r2 (r2 = nrOfVarSets)
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7 @%p1 bra End;
8
9 // remaining Kernel

10
11 End:
12 ret;

It needs to be noted, that the register %r2 is not needed. Since the transpiler already
knows the number of data points, it would be wasteful to transmit this information to
the kernel. Instead, the transpiler inserts the number directly as a constant to save
resources.

Main Loop

The main loop of the transpiler, which generates the kernel for evaluating a single
expression, is analogous to the interpreter’s main loop. Since the transpiler uses the
same intermediate representation as the interpreter, both loops behave similarly. The
transpiler loop also uses a stack to store the values and intermediate results. However,
the transpiler does not require the special opcode stop which was necessary in the
interpreter to handle expressions padded to fit into a matrix. The transpiler only needs
to process a single expression, which is stored in an unpadded vector of known length.
This means that all tokens within the vector are valid and therefore do not require this
opcode.

When the loop encounters a token that represents an index to either the variable
or the parameter matrix, the transpiler needs to generate code to load these values. In
the general case, this works in exactly the same way as the interpreter, calculating the
index and accessing the matrices at that location.

However, the first time a variable or parameter is accessed, it must be loaded from
global memory. Although registers already exist that hold a pointer to the address of
the matrices in global memory, the data is still not accessible. To make it accessible,
the index to the value must first be calculated in the same way as it is calculated in
the interpreter. Afterwards the value must be loaded into a register with the instruction
ld.global.f32 %reg1, [%reg2]. Using the first register of the instruction, the data
can be accessed. For example, if the variable 𝑥1 is accessed several times, all subsequent
calls only need to reference this register and do not need to load the data from global
memory again.

In the case where the current token represents an operation, the code for this oper-
ation needs to be generated. Many operators have direct equivalents on the GPU. For
example addition has the add.f32 %reg1, %reg2, %reg3; instruction. The instruc-
tions for division and square root operations have equivalent instruction, but these only
support approximate calculations. Although the accuracy can be controlled with differ-
ent options, the fastest option .approx has been selected. While a slightly slower but
more accurate option .full exists, it is not fully IEEE 754 compliant and has therefore
not been used.

However, not all supported operators have a single instruction GPU equivalent.
For example, the 𝑥𝑦 operation does not have an equivalent and must be generated
differently. Compiling a kernel containing this operation using the Nvidia compiler and
the - -use_fast_math compiler flag will generate the following code:
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lg2.approx.f32 %reg1, %reg2;
mul.f32 %reg4, %reg3, %reg1;
ex2.approx.f32 %reg5, %reg4;

While this compiler flag trades accuracy for performance, the more accurate version of
this operation contains about 100 instructions instead of the three above. Therefore,
the more performant version was chosen to be generated by the transpiler. Similarly,
the operations log(𝑥) and 𝑒𝑥 have no equivalent instruction and are therefore generated
using the same principle.

The final register of the generated code stores the result of the operation once it has
been executed. As with the interpreter, this result is either the final value or an input
to another operation. Therefore, this register must be stored on the stack for later use.

Once the main loop has finished, the last element on the stack holds the register
with the result of the evaluation. The value of this register must be stored in the result
matrix. As the result matrix is stored in global memory, the code for storing the data
is similar to the code responsible for loading the data from global memory. First, the
location where the result is to be stored must be calculated. Storing the result at this
location is performed with the instruction st.global.f32 [%reg1], %reg2;.

4.4.3 GPU Side
On the GPU, the transpiled kernels are executed. Given that these kernels are relatively
simple, containing minimal branching and overhead, the GPU does not need to perform
a lot of operations. As illustrated in Program 4.3, the kernel for the expression 𝑥1 +𝑝1 is
quite straightforward. It involves only two load operations, the addition and the storing
of the result in the result matrix. Essentially, the kernel mirrors the expression directly,
with the already explained added overhead.

Note that Program 4.3 has been slightly simplified to omit the mandatory direc-
tives and the register allocation. From line five to line ten, the addresses stored in the
parameters are converted from parameter state space into global state space so that
they reference the correct portion of the GPU’s memory. It needs to be noted, that this
kernel uses 64-bit addresses, which is the reason why some 64-bit instructions are used
throughout the kernel. However, the evaluation of the expression itself is performed
entirely using the faster 32-bit instructions.

Lines 12 through 17 are responsible for calculating the global thread ID and ensuring
that excessive threads are terminated early. Note that in line 16, if the global thread ID
stored in register %r3 is greater than one, it must terminate early. This is because only
one data point needs to be evaluated in this example.

The PTX code from line 22 to line 28 is the actual evaluation of the expression, with
line 28 performing the calculation 𝑥1 +𝑝1. All other lines are responsible for loading the
values from global memory. The instructions in lines 22, 23, 25 and 26 are responsible
for calculating the offset in bytes to the memory location where the value is stored with
respect to the location of the first element.

The constants 4 and 0 are introduced for performance reasons. The number 4 is the
size of a data point in bytes. Since one data point in this case stores only a single FP32
value, each data point has a size of four bytes. Similarly, the number 0 represents the
index of the value within the data point. More precisely, this is the offset in bytes from
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1 .visible .entry Evaluator(
2 .param .u64 param_1, .param .u64 param_2, .param .u64 param_3)
3 {
4 // Make parameters stored in global memory accessible
5 ld.param.u64 %rd0, [param_1];
6 cvta.to.global.u64 %parameter0, %rd0;
7 ld.param.u64 %rd1, [param_2];
8 cvta.to.global.u64 %parameter1, %rd1;
9 ld.param.u64 %rd2, [param_3];

10 cvta.to.global.u64 %parameter2, %rd2;
11
12 mov.u32 %r0, %ntid.x;
13 mov.u32 %r1, %ctaid.x;
14 mov.u32 %r2, %tid.x;
15 mad.lo.s32 %r3, %r0, %r1, %r2;
16 setp.gt.s32 %p0, %r3, 1;
17 @%p0 bra L__BB0_2; // Jump to end of kernel if too many threads are started
18 cvt.u64.u32 %rd3, %r3;
19 mov.u64 %rd4, 0;
20
21 // Load variable and parameter from global memory and add them together
22 mad.lo.u64 %rd5, %rd3, 4, 0;
23 add.u64 %rd5, %parameter0, %rd5;
24 ld.global.f32 %var0, [%rd5];
25 mad.lo.u64 %rd6, %rd4, 4, 0;
26 add.u64 %rd6, %parameter1, %rd6;
27 ld.global.f32 %var1, [%rd6];
28 add.f32 %f0, %var0, %var1;
29
30 // Store the result in the result matrix
31 add.u64 %rd7, 0, %rd3;
32 mad.lo.u64 %rd7, %rd7, 4, %parameter2;
33 st.global.f32 [%rd7], %f0;
34
35 L__BB0_2: ret;
36 }

Program 4.3: The slightly simplified PTX kernel for the expression 𝑥1 + 𝑝1. For sim-
plicity, the allocation of registers and the required directives .version and .target have
been removed.

the index to the data point, which is zero for the first element, four for the second, and
so on. These two constants are calculated during the transpilation process to minimise
the amount of data to be transferred to the GPU.

Storing the result in the result matrix is performed from line 31 to 33. The location
where the value is to be stored is calculated in lines 31 and 32. Line 31 calculates the
index inside the result matrix according to the current data point stored in register
%rd3. The constant 0 is the product of the index of the expression being evaluated and
the number of data points, and represents the column of the result matrix. Converting
this index into bytes and adding it as an offset to the first element of the result matrix
gives the correct memory location to store the result at.
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This kernel consists mostly of overhead code, as only lines 22 through 33 contribute
to calculating the result of the expression with the designated variable and parameter
set. However, for larger expressions, the percentage of overhead code shrinks drastically.



Chapter 5

Evaluation

This thesis aims to determine whether one of the two GPU evaluators is faster than
the current CPU evaluator. This chapter describes the performance evaluation process.
First, the environment in which the performance benchmarks are conducted is explained.
Next the individual results for the GPU interpreter and transpiler are presented indi-
vidually alongside the performance tuning process to achieve these results. Finally, the
results of the GPU evaluators are compared to those of the CPU evaluator to answer
the research questions of this thesis.

5.1 Benchmark Environment
In this section, the benchmark environment used to evaluate the performance is outlined.
To ensure the validity and reliability of the results, it is necessary to specify the details of
the environment. This includes a description of the hardware and software configuration
as well as the performance evaluation process. With this, the variance between the
results is minimised, which allows for better reproducibility and comparability between
the implementations.

5.1.1 Hardware Configuration
The hardware configuration is the most important aspect of the benchmark environ-
ment. The capabilities of both the CPU and GPU can have a significant impact on
the resulting performance. The following sections outline the importance of the individ-
ual components as well as the hardware used for the benchmarks and the performance
tuning.

GPU

The GPU plays a crucial role, as different microarchitectures typically operate differ-
ently and therefore require different performance tuning. Although the evaluators can
generally operate on any Nvidia GPU with a compute capability of at least 6.1, they are
tuned for the Ampere microarchitecture which has a compute capability of 8.6. Despite
the evaluators being tuned for this microarchitecture, more recent microarchitectures

51
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can be used as well. However, additional tuning is required to ensure that the evaluators
can utilise the hardware to its fullest potential.

Tuning must also be done on a per-problem basis. In particular, the number of data
points impact how well the hardware is utilised. Therefore, it is crucial to determine
which configuration yields the best performance. Section 5.2 outlines steps to tune the
configuration for a specific problem.

CPU

Although the GPU plays a crucial role, work is also carried out on the CPU. The
interpreter primarily utilises the CPU for the frontend and data transfer, making it
more GPU-bound as most of the work is performed on the GPU. However, the transpiler
additionally relies on the CPU to perform the transpilation step. This step involves
generating a kernel for each expression and sending these kernels to the driver for
compilation, a process also handled by the CPU. By contrast, the interpreter only
required one kernel which needs to be converted into PTX and compiled by the driver
only once. Consequently, the transpiler is significantly more CPU-bound and variations
in the CPU used have a much greater impact. Therefore, using a more powerful CPU
benefits the transpiler more than the interpreter.

System Memory

In addition to the hardware configuration of the GPU and CPU, system memory (RAM)
also plays a crucial role. Although RAM does not directly contribute to the overall
performance, it can have a noticeable indirect impact due to its role in caching and
general data storage. Insufficient RAM forces the operating system to use the page file,
which is stored on a considerably slower SSD. This leads to slower data access, thereby
reducing the overall performance of the application.

As seen in the list below, only 16 GB of RAM were available during the bench-
marking process. This amount is insufficient to utilise caching to the extent outlined in
Chapter 4. Additional RAM was not available, meaning caching had to be disabled for
all benchmarks as further explained in Section 5.2.

Hardware

With the requirements explained above in mind, the following hardware is used to
perform the benchmarks for the CPU-based evaluator, as well as for the GPU-based
evaluators:

• Intel i5 12500
• Nvidia RTX 3060 Ti
• 16 GB 4400 MT/s DDR5 RAM

5.1.2 Software Configuration
Apart from the hardware, the performance of the evaluators can also be significantly
affected by the software. Primarily these three software components or libraries are
involved in the performance of the evaluators:
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• GPU Driver
• Julia
• CUDA.jl
Typically, newer versions of these components include, among other things, perfor-

mance improvements. This is why it is important to specify the version which is used
for benchmarking. The GPU driver has version 561.17, Julia has version 1.11.5, and
CUDA.jl has version 5.8.1. As with the hardware configuration, this ensures that the
results are reproducible and comparable to each other.

5.1.3 Performance Evaluation Process
Now that the hardware and software configurations have been established, the bench-
marking process can be defined. This process is designed to simulate the load and sce-
nario in which these evaluators will be used. The Nikuradse dataset (Nikuradse, 1950)
has been chosen as the data source. The dataset models the laws of flow in rough pipes
and provides 362 data points, each set containing two variables. This dataset has first
been used by Guimerà et al. (2020) to benchmark a symbolic regression algorithm.

Since only the evaluators are benchmarked, the expressions to be evaluated must
already exist. These expressions are generated for the Nikuradse dataset using the ex-
haustive symbolic regression algorithm proposed by Bartlett et al. (2024). This ensures
that the expressions are representative of what needs to be evaluated in a real-world
application. In total, three benchmarks will be conducted, each having a different goal,
which will be further explained in the following paragraphs.

The first benchmark involves a very large set of roughly 250 000 expressions with 362
data points. This means that when using GP all 250 000 expressions would be evaluated
in a single generation. In a typical generation, significantly fewer expressions would
be evaluated. However, this benchmark is designed to show how the evaluators can
handle very large volumes of data. Because of memory constraints, it was not possible
to conduct an additional benchmark with a higher number of data points.

Both the second and third benchmarks are conducted to demonstrate how the eval-
uators will perform in more realistic scenarios. For the second benchmark the number
of expressions has been reduced to roughly 10 000, and the number of data points is
again 362. The number of expressions is much more representative to a typical scenario,
while the number of data points is still low. To determine if the GPU evaluators are a
feasible alternative in scenarios with a realistic number of expressions but comparably
few data points, this benchmark is conducted nonetheless.

Finally, a third benchmark will be conducted. Similar to the second benchmark, this
benchmark evaluates the same roughly 10 000 expressions but now with 30 times more
data points, which equates to roughly 10 000. This benchmark mimics the scenario where
the evaluators will most likely be used. While the others simulate different conditions
to determine if and where the GPU evaluators can be used efficiently, this benchmark is
more focused on determining if the GPU evaluators are suitable for the specific scenario
they are likely going to be used in.

All three benchmarks also simulate a parameter optimisation step, as this is the
intended use-case for these evaluators. For parameter optimisation, 100 steps are used,
meaning that all expressions are evaluated 100 times. During the benchmark, this pro-
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cess is simulated by re-transmitting the parameters instead of generating new ones.
Generating new parameters is not part of the evaluators and is therefore not imple-
mented. However, because the parameters are re-transmitted each time, the overhead
of sending the data is taken into account. This overhead is part of the evaluators and
represents an additional burden that the CPU implementation does not have, making
it important to be measured.

Measuring Performance

The performance measurements are taken, using the BenchmarkTools.jl1 package. It is
the standard for benchmarking applications in Julia, which makes it an obvious choice
for measuring the performance of the evaluators.

It offers extensive support for measuring and comparing results of different im-
plementations and versions of the same implementation. Benchmark groups allow to
categorise the different implementations, take performance measurements and compare
them. When taking performance measurements, it also supports setting a timeout and
most importantly, set the number of samples to be taken. This is especially important,
as it ensures to produce stable results by combating run-to-run variance. For this thesis,
a sample size of 50 has been used. This means that each of the previously-mentioned
benchmarks, gets executed 50 times.

Theoretical Maximum Performance

To get an idea of how much performance would in theory be achievable, a rough opti-
mistic estimation can be done. On average over all roughly 250 000 expressions of the
first benchmark, a single expression has five operators. This translates to five floating
point operations or FLOPS. Since some operators such as 𝑥𝑦 require three instructions,
it is assumed that one of the five operators is such an operator. As a result 𝑥𝑦 needs
three FLOPS which in total means a single expression on average requires seven FLOPS
to be evaluated.

Furthermore, expressions consist of variables and parameters, which need to be
loaded from memory. It is assumed that per expression one parameter exists. Since
the Nikuradse dataset is used, it is known that each expression contains exactly two
variables. Loading a value from memory consists of three instructions. Therefore, it is
assumed loading a value requires three FLOPS. This brings the total number of FLOPS
per expression to 16.

The used GPU has a theoretical performance of 16.2 Terra-FLOPS (TFLOPS) per
second2. Since the GPU has 4 864 cores, a single core has a theoretical performance of
16.2/4 864 ≈ 0.0033 TFLOPS or 3.3 GFLOPS per second. This means that a single core
can perform 3.3 billion 32-bit floating point operations per second. In return, this means
that a single core can evaluate approximately 208 million expressions per second. As a
result, a single core would be able to evaluate all expressions of the first benchmark in
less than a second, assuming the data is instantly accessible, and no more FLOPS are
required to evaluate an expression than already accounted for.

1https://juliaci.github.io/BenchmarkTools.jl/stable/
2https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-ti.c3681

https://juliaci.github.io/BenchmarkTools.jl/stable/
https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-ti.c3681
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This calculation however is a very rough estimate. It does not take into account
the time spent waiting for data to arrive nor does it take into account the time it
takes to schedule the threads on the actual cores and other overhead work or waiting
times. Especially the time spent waiting for data to arrive is important, as all data
is present in global memory, which is the slowest form of memory on a GPU. While
loading memory is a three instruction operation, it is very likely that the resulting
machine code contains more instructions and therefore more FLOPS. Furthermore, both
implementations contain many overhead instructions which are not accounted for in the
above estimate. The interpreter loop for example contains many instructions that are
not directly contributing to evaluating the expressions such as branching and jumping
instructions. Additionally, not all FLOPS operate on FP32 values. Some also operate
on FP64 instructions, which are about 64 times slower than FP32 instructions on this
GPU.

As seen in the results below, the benchmarks clearly show that the waiting time
can not be neglected in the performance estimation. Furthermore, the CPU side has
been omitted fully in the estimation. However, a significant part of the runtime is on
the CPU, especially for the transpiler. Providing an estimation that incorporates both
the waiting time and overhead FLOPS is an involved process which is out of scope
of this thesis. Furthermore, no performance measurements of the runtime of a single
kernel have been taken. While this would be interesting to get an idea of how much
performance is lost compared to an ideal and optimistic scenario, it would have taken
too much time to perform this analysis.

5.2 Results
This section presents the results of the benchmarks described above. First the results
for the GPU-based interpreter and GPU transpiler alongside the performance tuning
process will be presented in isolation. Finally, both GPU-based evaluators will be com-
pared with each other to determine which of them performs the best. Additionally, these
evaluators will be compared against the CPU-based interpreter to answer the research
questions of this thesis.

5.2.1 Interpreter
In this section, the results for the GPU-based interpreter are presented in detail. Fol-
lowing the benchmark results, the process of tuning the interpreter is described as well
as how to adapt the tuning for the different benchmarks. This part not only contains
the tuning of the GPU, but also performance improvements done on the CPU side.

Benchmark 1

The first benchmark consists of 250 000 expressions and 362 data points with 100 param-
eter optimisation steps. Because each expression needs to be evaluated with each data
point for each parameter optimisation step, a total of 250 000 * 362 * 100 ≈ 9.05 billion
evaluations have been performed per sample. In Figure 5.1 the result over all 50 sam-
ples is presented. The median value across all samples is 466.3 seconds with a standard
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Figure 5.1: The results of the GPU-based interpreter for benchmark 1

Figure 5.2: The results of the GPU-based interpreter for benchmark 2

deviation of 14.2 seconds.
For the kernel configuration, a block size of 128 threads has been used. As will be

explained below, this has been found to be the configuration that results in the most
performance. During the benchmark, the utilisation of both the CPU and GPU was
roughly 100%.

Benchmark 2

With 10 000 expressions, 362 data points and 100 parameter optimisation steps, the total
number of evaluations per sample was 362 million. The median across all samples is 21.3
seconds with a standard deviation of 0.75 seconds. Compared to the first benchmark,
there were 25 times fewer evaluations which also resulted in a reduction of the median
and standard deviation of roughly 25 times. This indicates a roughly linear correlation
between the number of expressions and the runtime. Since the number of data points
did not change, the block size for this benchmark remained at 128 threads. Again the
utilisation of the CPU and GPU during the benchmark was roughly 100%.

Benchmark 3

The third benchmark used the same 10 000 expressions and 100 parameter optimisation
steps. However, now there are 30 times more data points that need to be used for evalu-
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Figure 5.3: The results of the GPU-based interpreter for benchmark 3

ation. This means, that the total number of evaluations per sample is now 10.86 billion.
Compared to the first benchmark, an additional 1.8 billion evaluations were performed.
However, as seen in Figure 5.3, the execution time was significantly faster. With a me-
dian of 30.3 seconds and a standard deviation of 0.45 seconds, this benchmark was only
marginally slower than the second benchmark. This also indicates, that the GPU eval-
uators are much more suited for scenarios, where there is a high number of data points.

Although the number of data points has been increased by 30 times, the block size
remained at 128 threads. Unlike the previous benchmarks, the hardware utilisation was
different. Now only the GPU was utilised to 100% while the CPU utilisation started at
100% and slowly dropped to 80%. The GPU needs to perform 30 times more evaluations
per expression, meaning it takes longer for one kernel dispatch to be finished. At the
same time, the CPU tries to dispatch the kernel at the same rate as before. Because
only a certain number of kernels can be dispatched at once, the CPU needs to wait
for the GPU to finish a kernel before another one can be dispatched. Therefore, in this
scenario, the evaluator runs into a GPU-bottleneck and using a more performant GPU
would consequently improve the runtime. In the previous benchmarks, both the CPU
and GPU would need to be upgraded, to achieve better performance.

5.2.2 Performance Tuning Interpreter
Optimising and tuning the interpreter is crucial to achieve good performance. Especially
tuning the kernel, as a wrongly configured kernel can drastically degrade performance.
Before any performance tuning and optimisation has been performed, the kernel was
configured with a block size of 256 threads since it is a good initial configuration as
recommended by Nvidia (2025a). Additionally, on the CPU, the frontend was executed
for each expression before every kernel dispatch, even in parameter optimisation sce-
narios, where the expressions did not change from one dispatch to the other. Moreover,
the variables have also been transmitted to the GPU before ever dispatch. However,
executing the frontend, as well as dispatching the kernel was multithreaded, utilising all
12 threads of the CPU and a cache for the frontend was utilised.

With this implementation, the initial performance measurements have been con-
ducted for the first benchmark which served as the baseline for further performance
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optimisations. However, as already mentioned, during this benchmark, memory limi-
tations where encountered, as too much RAM was being used. Therefore, the caching
had to be disabled. Because the evaluator is multithreaded, this change resulted in
significantly better performance. As the cache introduced critical sections where race
conditions could occur, locking mechanisms were required. While locking ensures that
no race conditions occur, it also means that parts of an otherwise entirely parallel im-
plementation are now serialised, reducing the effect of parallelisation.

Without a cache and utilising all 12 threads, the frontend achieved very good per-
formance. Processing 250 000 expressions takes roughly 88.5 milliseconds. On the other
hand, using a cache, resulted in the frontend running for 6.9 seconds. This equates to
a speed-up of roughly 78 times when using no cache. Additionally, when looking at the
benchmark results above, the time it takes to execute the frontend is negligible, meaning
further optimising the frontend would not significantly improve the overall runtime.

During the tuning process 362 data points have been used, which is the number
of data points used by benchmark one and two. Before conducting benchmark three,
additional performance tuning has been performed to ensure that this benchmark also
utilises the hardware as much as possible.

Optimisation 1

After caching has been disabled, the first performance improvement was to drastically
reduce the number of calls to the frontend and the number of data transfers to the GPU.
Because the expressions and variables never change during the parameter optimisation
process, processing the expression and transmitting the data to the GPU on each step
wastes resources. Therefore, the expressions are sent to the frontend once before the
parameter optimisation process. Afterwards, the processed expressions as well as the
variables are transferred to the GPU exactly once for this execution of the interpreter.

Figure 5.4 shows how this optimisation improved the overall performance as demon-
strated with benchmark one. However, it can also be seen that the range the individual
samples fall within is much greater now. While in all cases, this optimisation improved
the performance, in some cases the difference between the initial and the optimised ver-
sion is very low with roughly a two-second improvement. On median the performance
improvement was roughly five percent.

Optimisation 2

The second optimisation was concerned with tuning the kernel configuration. Using
NSight Compute3 it was possible to profile the kernel with different configurations.
During the profiling a lot of metrics have been gathered that allowed to deeply analyse
the kernel executions, with the application recommending different aspects that had
potential for performance improvements.

Since the evaluator is designed to execute many kernel dispatches in parallel, it was
important to reduce the kernel runtime. Reducing the runtime per kernel has a knock-on
effect, as the following kernel dispatches can begin execution sooner reducing the overall
runtime.

3https://developer.nvidia.com/nsight-compute

https://developer.nvidia.com/nsight-compute
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Figure 5.4: Comparison of the initial implementation with the first optimisation applied
on benchmark one. Note that while the results of the optimisation fall within a much
wider range, all samples performed better than the initial implementation.

Figure 5.5: Comparison of the first optimisation with the second applied on benchmark
one.

After the evaluator tuning has been concluded, it was found that a block size of 128
yielded the best results. With this kernel configuration, another performance measure-
ment has been conducted with the results shown in Figure 5.5 using benchmark one.
As can be seen, the overall runtime again was noticeably faster, albeit in improvement
of roughly six percent. However, the standard deviation also drastically increased, with
the duration from the fastest to the slowest sample differing by roughly 60 seconds.

The found block size of 128 might seem strange. However, it makes sense, as in total
at least 362 threads need to be started to evaluate one expression. If one block contains
128 threads a total of 362/128 ≈ 3 blocks need to be started, totalling 384 threads.
As a result, only 384 − 362 = 22 threads are excess threads. When choosing a block
size of 121 three blocks could be started, totalling one excess thread. However, there
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Figure 5.6: Comparison of the execution times of benchmark three with a block size of
128, 160 and 192.

is no performance difference between a block size of 121 and 128. Since all threads are
executed inside a warp, which consists of exactly 32 threads, a block size that is not
divisible by 32 has no benefit and only hides the true amount of excess threads started.

Benchmark three had a total of 10 860 data points, meaning at least this number of
threads must be started. To ensure optimal hardware utilisation, the evaluator had to
undergo another tuning process. As seen above, it is beneficial to start as little excess
threads as possible. By utilising NSight Compute, a performance measurement with
a block size of 128 was used as the initial configuration. This already performed well
as again very little excess threads are started. In total 10 860/128 ≈ 84.84 blocks are
needed, which must be round up to 85 blocks with the last block being filled by roughly
84% which equates to 20 excess threads being started.

This was repeated for two more configurations. Once for a block size of 160 and once
for 192. With a block size of 160, the total number of blocks was reduced to 68, which
again resulted in 20 excess threads being started. With the hypothesis behind increasing
the block size was that using fewer blocks would result in better utilisation and therefore
better performance. The same idea was also behind choosing a block size 192. However,
While this only required 57 blocks, the number of excess threads increased to 84.

Using NSight Compute it was found, that a block size of 160 was the best performing
followed by the block size of 192 and the worst performing configuration was with
a block size of 128. However, this is not representative of how these configurations
performed during the benchmarks. As seen in Figure 5.6 using a block size of 128 lead
to significantly better performance than the other configurations. While a block size
of 160 lead to worse results, it needs to be noted that it also improved the standard
deviation by 25% when compared to the results with a block size of 128. These results
also demonstrate that it is important to not only use NSight Compute but also conduct
performance tests with real data to ensure the best possible configuration is chosen.
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Figure 5.7: Comparison of the second optimisation with the third applied on benchmark
one.

Optimisation 3

As seen in Figure 5.5, while the performance overall improved, the standard deviation
also significantly increased. With the third optimisation the goal was to reduce the
standard deviation. In order to achieve this, some minor optimisations where applied.

The first optimisation was to reduce the stack size of the interpreter from 25 to 10.
As the stack is stored in local memory, it is beneficial to minimise the data transfer
and allocation of memory. This change, however, means that the stack might not be
sufficient for larger expressions. Because with a stack size of 10 no problems were found
during testing, it was assumed to be sufficient. In cases where this isn’t sufficient, the
stack size can be increased.

During the parameter optimisation step a lot of memory operations where per-
formed. These are required as for each step new memory on the GPU must be al-
located for both the parameters and the meta information. The documentation of
CUDA.jl4 mentioned that this can lead to higher garbage-collector (GC) pressure,
increasing the time spent garbage-collecting. To reduce this, CUDA.jl provides the
CUDA.unsafe_free!(::CuArray) function. This frees the memory on the GPU without
requiring to run the Julia GC and therefore spending less resources on garbage-collecting
and more on evaluating the expressions.

With these two changes the overall runtime has been improved by two percent as
can be seen in Figure 5.7. Moreover, the standard deviation was also reduced which was
the main goal of this optimisation.

5.2.3 Transpiler
In this section the results for the transpiler are presented in detail. First the results for
all three benchmarks are shown. The benchmarks are the same as already explained in
the previous sections. After the results, an overview of the steps taken to optimise the

4https://cuda.juliagpu.org/stable/usage/memory/#Avoiding-GC-pressure

https://cuda.juliagpu.org/stable/usage/memory/#Avoiding-GC-pressure
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Figure 5.8: The results of the transpiler for benchmark 2.

transpiler execution times is given.

Benchmark 1

This benchmark lead to very poor results for the transpiler. While the best performing
kernel configuration of 128 threads per block was used, the above-mentioned RAM
constraints meant that this benchmark performed poorly. After roughly 20 hours of
execution only two samples have been taken at which point it was decided to not finish
this benchmark and treat it as failed.

As described in Chapter 4 the expressions are transpiled into PTX code and then
immediately compiled into machine code by the GPU driver before the compiled kernels
are sent to the parameter optimisation step. This order of operations makes sense as
the expressions remain the same during this process and otherwise would result in
performing a lot of unnecessary transpilations and compilations.

However, only 16 GB of RAM where available with about half of that being used by
the operating system. This meant that about eight GB of RAM where available to store
250 000 compiled kernels next to other required data for example the variable matrix.
As a result, this was not enough memory and the benchmark failed. To combat this the
step of compiling the kernels was moved into the parameter optimisation process, as
this would free the memory taken up by the compiled kernel after it has been executed.
As seen above consequently the performance was hurt dramatically and has shown that
for these scenarios much more memory is required for the transpiler to work properly.

Benchmark 2

By reducing the number of expressions from 250 000 to roughly 10 000 the RAM con-
straint that hindered the first benchmark is not a concern any more. This can also be
seen in Figure 5.8 where the benchmark could be completed in a much more reasonable
time. The median of this benchmark was 19.6 seconds with a standard deviation of 1.16
seconds. Again for this benchmark a block size of 128 threads has been chosen.

During the benchmark it was observed that the CPU maintained a utilisation of
100%. However crucially the GPU rapidly oscillated between 0% and 100% utilisation.
This pattern suggests that while the kernels can fully utilise the GPU, they complete
the evaluations almost immediately. Consequently, although the evaluation is performed
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Figure 5.9: The results of the transpiler for benchmark 3.

very quickly, the time spent evaluating is smaller than the time spent preparing the
expressions for evaluation. To better leverage the GPU, more evaluations should be
performed. This would increase the GPU’s share of total execution time and therefore
increase the efficiency drastically.

Benchmark 3

This benchmark increased the amount of data points by 30 times and therefore also
increases the total number of evaluations by 30 times. As observed in the second bench-
mark, the GPU was underutilised and thus had more resources available for evaluating
the expressions. As shown in Figure 5.9 the available resources were better utilised.
Although the number of evaluations increased by a factor of 30, the median execution
time only increased by approximately six seconds, or 1.3 times, from 19.6 to 25.4. The
standard deviation also decreased from 1.16 seconds to 0.65 seconds.

Given the change in the number of data points, additional performance tests with
different block sizes were conducted. During this process it was found, that changing the
block size from 128 to 160 threads resulted in the best performance. This is in contrast
to the GPU interpreter where changing the block size to 160 resulted in degraded
performance.

While conducting this benchmark, the CPU utilisation began at 100% during the
frontend step as well as the transpilation and compilation steps. However, similar to the
third benchmark of the GPU interpreter, the CPU utilisation dropped to 80% during
the evaluation phase. This is very likely due to the same reason that the kernels are
dispatched too quickly in succession, filling up the number of allowed resident grids on
the GPU.

However, GPU utilisation also increased drastically. During the second benchmark,
rapid oscillation was observed. With this benchmark the utilisation remained much more
stable with the utilisation hovering around 60% to 70% most of the time. It should also
be noted that there appeared frequent spikes to 100% and slightly less frequent drops to
20% utilisation. Overall the GPU utilisation was much higher compared to the second
benchmark, which explains why the execution time only increased slightly despite the
drastic increase in the number of evaluations.
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5.2.4 Performance Tuning Transpiler
This section describes how the transpiler has been tuned to achieve good performance.
Steps taken to improve the performance of the CPU-side of the transpiler are presented.
Additionally, steps taken to improve the performance of the kernels are also shown.

Before any optimisations were applied, the block size was set to 256 threads. The
frontend as well as the transpilation and compilation were performed during the pa-
rameter optimisation step before the expression needed to be evaluated. Additionally,
the variables have also been sent to the GPU on every parameter optimisation step.
Multithreading has been used for the frontend, transpilation, compilation and kernel
dispatch. Caching has also been used for the frontend and for the transpilation process
in an effort to reduce the runtime.

As already mentioned in Section 5.2.2, using a cache in combination with multi-
threading for the frontend drastically slowed down the execution, which is the reason it
has been disabled before conducting any benchmarks.

Caching has also been used for the transpilation step. The reason for this was to
reduce the runtime during the parameter optimisation step. While this reduced the
overhead of transpilation, the overhead of searching the cache if the expression has
already been transpiled still existed. Because of the already mentioned RAM constraints
this cache has been disabled and a better solution has been implemented in the first
and second optimisation steps.

Most data of the tuning process has been gathered with the number of expressions
and data points of the first benchmark, as this was the worst performing scenario.
Therefore, it would show best where potential for performance improvements was. Before
any optimisations were applied a single sample of the first benchmark took roughly 15
hours. However, it needs to be noted that only two samples were taken due to the
duration of one sample.

Optimisation 1

Since all caching has been disabled, a better solution for reducing the number of calls to
the frontend was needed. For this, the calls to the frontend were moved outside the pa-
rameter optimisation step and storing the result for later use. Furthermore, transmitting
the variables to the GPU has also been performed before the parameter optimisation is
started, further reducing the number and volume of data transfer to the GPU. These
two optimisations were able to reduce the runtime of one sample to roughly 14 hours
and are equivalent to the first optimisation step of the GPU interpreter.

Optimisation 2

With this optimisation step the number of calls to the transpiler and compiler have
been drastically reduced. Both steps are now performed at the same time the frontend
is called. The compiled kernels are then stored and only need to be executed during the
parameter optimisation step. This meant that a cache was not needed any more. Because
each time a new set of expressions needs to be evaluated, it is extremely unlikely that
the same expression needs to be evaluated more than once. Consequently, the benefit
of reducing the RAM consumption far outweighs the potential time savings of using a
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cache. Moreover, removing the cache also reduced the overhead of accessing it on every
parameter optimisation step, further improving performance.

It also must be noted, that compiling the PTX kernels and storing the result before
the parameter optimisation step lead to an out of memory error for the first benchmark.
In order to get any results, this step had to be reverted for this benchmark. If much
more RAM were available, the runtime would have been significantly better.

Nonetheless, these optimisations lead to a runtime of one sample of roughly ten
hours for the first benchmark. Therefore, a substantial improvement of roughly four
hours or 40% per sample was achieved. When 10 000 expressions are transpiled it takes
on average 0.05 seconds over ten samples. Comparing this to the time spent compiling
the resulting 10 000 kernels it takes on average 3.2 seconds over ten samples. This
suggests that performing the compilation before the parameter optimisation step would
yield drastically better results in the first benchmark.

Optimisation 3

The third optimisation step was more focused on improving the performance for the
third benchmark as it has a higher number of data points than the first and second
one. However, as with the interpreter, the function CUDA.unsafe_free!(::CuArray)
has been used to reduce the standard deviation for all benchmarks.

Since the number of data points has changed in the third benchmark, it is important
to re-do the performance tuning. This was done by measuring the kernel performance
using NSight Compute. As with the interpreter, block sizes of 128 and 160 threads have
been compared with each other. A block size of 192 threads has been omitted here since
the number of excess threads is very high. In the case of the interpreter the performance
of this configuration was the worst out of the three configurations, and it was assumed
it will be similar in this scenario.

However, since the number of excess threads for 128 and 160 threads per block is
the same, the latter using fewer blocks might lead to performance improvements in the
case of the transpiler. As seen in Figure 5.10 this assumption was true and using a block
size of 160 threads resulted in better performance for the third benchmark. This is in
contrast to the interpreter, where this configuration performed much more poorly.

5.2.5 Comparison
With the individual results of the GPU interpreter and transpiler presented, it is possible
to compare them with the existing CPU interpreter. This section aims at outlining and
comparing the performance of all three implementations across all three benchmarks to
understand their strengths and weaknesses. Through this analysis the scenarios will be
identified where it is best to leverage the GPU but also when using the CPU interpreter
is the better choice, ultimately answering the research questions of this thesis.

Benchmark 1

The goal of the first benchmark was to determine how the evaluators are able to handle
large amounts of expressions. While this benchmark is not representative of a typical
scenario, it allows for demonstrating the impact the number of expressions has on the
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Figure 5.10: Runtime comparison of the third benchmark with block sizes of 128 and
160 threads.

Figure 5.11: The results of the comparison of the CPU and GPU based interpreter
for the first benchmark. Note that the transpiler is absent because it did not finish this
benchmark.

execution time. As already explained in Section 5.2.3 the transpiler failed to finish this
benchmark due to RAM limitations. This required a slightly modified implementation
to obtain results for at least two samples, each taking roughly ten hours to complete,
which is the reason it has been omitted from this comparison.

Figure 5.11 shows the results of the first benchmark for the CPU and GPU inter-
preter. It can be seen that the GPU interpreter takes roughly four times as long on
median than the CPU interpreter. Additionally, the standard deviation is much larger
on the GPU interpreter. This shows that the CPU heavily benefits from scenarios where
a lot of expressions need to be evaluated with very few data points. Therefore, it is not
advisable to use the GPU to increase the performance in such scenarios.

Benchmark 2

Since the first benchmark has shown that with a large number of expressions the GPU is
not a suitable alternative to the CPU. To further proof this statement a second bench-
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Figure 5.12: The results of the comparison of all three implementations for the second
benchmark.

mark with much fewer expressions was conducted. Now instead of 250 000 expressions,
only 10 000 are evaluated. This reduction also meant that the transpiler can now be
included in the comparison as it does not face any RAM limitations any more.

Reducing the number of expressions did not benefit the GPU evaluators at all in
relation to the CPU interpreter. This can be seen in Figure 5.12. Furthermore, now the
GPU evaluators are both roughly five times slower than the CPU interpreter instead of
the previous performance reduction of roughly four times. Again the standard deviation
is also much higher on both GPU evaluators when compared to the CPU interpreter.
This means that a lower number of expressions does not necessarily mean that the
GPU can outperform the CPU. Thus disproving the above statement that only a large
number of expressions results in the GPU performing poorly.

On the other side, it can also be seen that the GPU transpiler tends to perform
better than the GPU interpreter. While in the worst case both implementations are
roughly equal, the GPU transpiler on median performs better. Additionally, the GPU
transpiler can also outperform the GPU interpreter in the best case.

Benchmark 3

As found by the previous two benchmarks, varying the number of expressions only has a
slight impact on the performance of the GPU in relation to the performance of the CPU.
However, instead of varying the number of expressions, the number of data points can
also be changed. For this benchmark, instead of 362 data points, a total of 10 860 data
points were used, which translates to an increase in performance by 30 times. It needs
to be noted, that it was only possible to evaluate the performance with roughly 10 000
expressions with this number of data points. When using the same roughly 250 000
expressions of the first benchmark and the increased number of data points, none of
the implementations managed to complete the benchmark, as there was too little RAM
available.

Increasing the number of data points greatly benefited both GPU evaluators as seen
in Figure 5.13. With this change, the CPU interpreter noticeably fell behind the GPU
evaluators. Compared to the GPU transpiler, the CPU interpreter took roughly twice
as long on median. The GPU transpiler continued its trend of performing better than
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Figure 5.13: The results of the comparison of all three implementations for the third
benchmark.

the GPU interpreter. Furthermore, the standard deviation of all three evaluators is also
very similar.

From this benchmark it can be concluded that the GPU heavily benefits from a
larger number of data points. If the number of data points is increased even further, the
difference in performance between the GPU and CPU should be even more pronounced.

While the GPU is very limited in terms of concurrent kernel dispatches that can
be evaluated, the number of threads and blocks can virtually be infinitely large. This
means that a higher degree of parallelism is achievable with a higher number of data
points. Increasing the number of expressions on the other hand does not influence the
degree of parallelism to this extent. This is the reason no performance benefit was found
by only decreasing the number of expressions with the same number of data points.

5.2.6 Discussion
A similar problem statement of this thesis has already been explored by Weinberger
(2018). In his thesis he explored how utilising vector operations can be used in evaluating
expression trees generated with GP. He used OpenCL to, on the one hand, vectorise a
CPU implementation, and on the other hand utilise the GPU. Utilising the GPU using
CUDA to evaluate expressions generated at runtime has also been the focus of this
thesis. However, the goal of this thesis was to compare two GPU implementations with
each other and a CPU implementation specifically for the use in symbolic regression
utilising parameter optimisation.

In his thesis, Weinberger found that the GPU was able to outperform the CPU in all
instances. Especially with larger datasets the advantage of the GPU was clearly visible.
This trend was also confirmed in this thesis, specifically when comparing the second
and third benchmarks. However, in this thesis, the CPU implementation was able to
outperform the GPU clearly in two out of three benchmarks. This difference might be
caused by the sophisticated usage of vectorisation in the CPU implementation which
used for comparison. Overall this thesis was able to confirm the findings of Weinberger.
Additionally, implementations are demonstrated that support the evaluation of expres-
sions generated at runtime on the GPU that allow the usage of parameter optimisation
which was not possible with Weinberger’s implementation.
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Conclusion and Future Work

Research has been conducted on how to best approach the evaluation of dynamically
generated expressions for symbolic regression. The GPU has been chosen to improve the
performance as a cheap and powerful tool especially compared to compute clusters. Nu-
merous instances exist were utilising the GPU lead to drastic performance improvements
in many fields of research.

Two GPU evaluators were implemented which are used to determine if the GPU is
more suitable for evaluating expressions generated at runtime as compared to the CPU.
The two implementations are as follows:
GPU Interpreter

A stack based interpreter that evaluates the expressions. The frontend converts
these expressions into postfix notation to ensure the implementation can be as
simple as possible. It consists of one kernel that is used to evaluate all expressions
separately.

GPU Transpiler
A transpiler that takes the expressions and transpiles them into PTX code. Each
expression is represented in its own unique kernel. The kernels are simpler than
the one GPU interpreter kernel, but more effort is needed to generate them.

In total three benchmarks were conducted to determine if and under which circum-
stances the GPU is a more suitable choice for evaluating the expressions. A CPU-based
implementation is the baseline against which the GPU evaluators are evaluated. To
answer the research questions the benchmarks are structured as follows:

1. Roughly 250 000 expressions with 362 data points have been evaluated. The goal
of this benchmark was determining how the evaluators can handle large volumes
of expressions.

2. Roughly 10 000 expressions with 362 data points have been evaluated. This bench-
mark should demonstrate how a change in the number of expressions impacts the
performance, especially compared with each other.

3. Roughly 10 000 expressions and roughly 10 000 data points have been evaluated.
By increasing the number of data points a more realistic use-case is modelled with
this benchmark. Additionally, by using more data points the strengths of the GPU
should get more exploited.

69
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After conducting the first and second benchmarks it was clear, that the CPU is
the better choice in these scenarios. The CPU was faster by roughly four times when
compared to the GPU interpreter and the GPU transpiler did not finish this benchmark
at all.

The first benchmark in particular demonstrated how the high RAM usage of this
GPU transpiler implementation lead to it not finishing this benchmark. Storing 250 000
compiled kernels uses a lot of RAM, however, compiling the PTX kernels just in time
before they are executed is not a feasible alternative to reduce RAM usage. Since the
PTX kernels need to be compiled into machine code before they can be executed, one
alternative would be to use batch processing as a compromise between compiling ahead
of time and just in time. Since it is not expected that these evaluators need to evaluate
hundreds of thousands of expressions, the non-trivial process of rewriting the implemen-
tation to support batch processing has not been done.

Reducing the number of expressions demonstrated that the GPU transpiler can
perform better than the GPU interpreter by roughly ten percent. However, in relation
to the CPU implementation, no real change was observed between the first and second
benchmark with the CPU being faster by roughly five times.

In the third benchmark, both GPU evaluators managed to outperform the CPU, with
the GPU transpiler performing the best. The GPU interpreter was faster by roughly 1.6
times and the GPU transpiler was faster by roughly 2 times compared to the CPU inter-
preter. Furthermore, the GPU transpiler managed to outperform the GPU interpreter
by roughly 1.2 times.

To address the research questions, this thesis demonstrates that evaluating expres-
sions generated at runtime can be more efficient on the GPU under specific conditions.
Utilizing the GPU becomes feasible when dealing with a high number of data points,
typically in the thousands and above. For scenarios with fewer data points, the CPU
remains the better choice. Additionally, in scenarios where RAM is abundant, the im-
plementation of the GPU transpiler discussed in this thesis is the optimal choice. If too
little RAM is available and the number of data points is sufficiently large, the GPU
interpreter should be chosen, as it outperforms both the GPU transpiler and the CPU
in such cases.

6.1 Future Work
This thesis demonstrated how the GPU can be used to accelerate the evaluation of
expressions and therefore the symbolic regression algorithm as a whole. However, the
boundaries at which it is more feasible to utilise the GPU needs to be further refined.
Therefore, conducting more research into how the number of expressions and data points
impact performance is needed. Furthermore, only one dataset with only two variables
per data point was used. Varying the number of variables per data point and their
impact on performance could also be interesting. The impact of the parameters was
omitted from this thesis entirely. Further research on how the number of parameters
impact the performance is of interest. Since parameters need to be transferred to the
GPU frequently, having too many parameters could impact the GPU more negatively
than the CPU. Alternatively, performing the entire parameter optimisation step on the
GPU and not just the evaluation might also result in better performance, as the number
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of data transfers is drastically reduced.
The current implementation also has flaws that can be improved in future work.

Currently, no shared memory is utilised, meaning the threads need to always retrieve
the data from global memory. This is a slow operation and efficiently utilising shared
memory should further improve the performance of both GPU evaluators.

Furthermore, as seen with the GPU transpiler and the first benchmark, reducing
RAM usage is of essence for very large problems with hundreds of thousands of expres-
sions or very RAM limited environments. Therefore, future work needs to be done to
rewrite the transpiler to support batch processing and conduct benchmarks with this
new implementation. This will answer the question if batch processing allows the GPU
transpiler to outperform the CPU and GPU interpreters in these scenarios. Addition-
ally, it is of interest if the batch processing transpiler manages to achieve the same or
better performance in the other scenarios explored in this thesis.

Lastly, neither of the implementations supports special GPU instructions. Especially
the Fused Multiply-Add (FMA) instruction is of interest. Given that multiplying two
values and adding a third is a common operation, this special instruction allows these
operations to be performed in a single clock cycle. The frontend can be extended to de-
tect and convert sub-expressions of this form into a special ternary opcode, enabling the
backend to generate more efficient code. If the effort of detecting these sub-expressions
is outweighed by the performance improvement needs to be determined in a future work.
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