
Interpreter and Transpiler for Simple
Expressions on Nvidia GPUs using Julia

Daniel Roth

M A S T E R A R B E I T

eingereicht am

Fachhochschul-Masterstudiengang

Software Engineering

in Hagenberg

im Januar 2025

Advisor:

DI Dr. Gabriel Kronberger

ii

© Copyright 2025 Daniel Roth

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

iii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated as
such and properly acknowledged. I further declare that this or similar work has not been
submitted for credit elsewhere. This printed copy is identical to the submitted electronic
version.

Hagenberg, January 1, 2025

Daniel Roth

iv

Contents

Declaration iv

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Question . 2
1.3 Thesis Structure . 2

2 Fundamentals and Related Work 4
2.1 Equation learning . 4
2.2 GPGPU . 6

2.2.1 Programming GPUs . 8
2.2.2 PTX . 16

2.3 Compilers . 17
2.3.1 Interpreters . 18
2.3.2 Transpilers . 20

3 Concept and Design 21
3.1 Requirements . 21
3.2 Architecture . 23

3.2.1 Pre-Processing . 24
3.2.2 Interpreter . 26
3.2.3 Transpiler . 28

4 Implementation 31
4.1 Technologies . 31

4.1.1 CPU side . 31
4.1.2 GPU side . 31

4.2 Pre-Processing . 32
4.2.1 Intermediate Representation . 33
4.2.2 Processing . 34

4.3 Interpreter . 37
4.3.1 CPU Side . 37

v

Contents vi

4.3.2 GPU Side . 41
4.4 Transpiler . 42

4.4.1 CPU Side . 43
4.4.2 Transpiler Backend . 44
4.4.3 GPU Side . 48

5 Evaluation 50
5.1 Benchmark Environment . 50

5.1.1 Hardware Configuration . 50
5.1.2 Software Configuration . 51
5.1.3 Performance Evaluation Process 52

5.2 Results . 53
5.2.1 Interpreter . 53
5.2.2 Transpiler . 54
5.2.3 Performance Tuning . 54
5.2.4 Comparison . 55

6 Conclusion 56
6.1 Future Work . 56

References 57
Literature . 57
Online sources . 62

Abstract

This should be a 1-page (maximum) summary of your work in English.

vii

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit, Umfang max. 1 Seite. ...

viii

Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring this
topic is presented. In addition, the research questions of this thesis are outlined. Lastly
the methodology on how to answer these questions will be explained. This master thesis
is associated with the FFG COMET project ProMetHeus (#904919). The developed
software is used and further developed for modelling in the ProMetHeus project.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning or symbolic regression is another field that
can heavily benefit from optimisation. One part of equation learning, is to evaluate the
expressions generated by a search algorithm which can make up a significant portion
of the runtime. This thesis is concerned with optimising the evaluation part to increase
the overall performance of equation learning algorithms.

The following expression 5−abs(𝑥1)√𝑝1/10+2𝑥2 which contains simple mathemat-
ical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛 is one example that can be
generated by the equation learning algorithm, Usually an equation learning algorithm
generates multiple of such expressions per iteration. Out of these expressions all possibly
relevant ones have to be evaluated. Additionally, multiple different values need to be in-
serted for all variables and parameters, drastically increasing the amount of evaluations
that need to be performed.

In his blog, Sutter (2004) described how the free lunch is over in terms of the ever-
increasing performance of hardware like the CPU. He states that to gain additional
performance, developers need to start developing software for multiple cores and not
just hope that on the next generation of CPUs the program magically runs faster.
While this approach means more development overhead, a much greater speed-up can
be achieved. However, in some cases the speed-up achieved by this is still not large
enough and another approach is needed. One of these approaches is the utilisation

1

1. Introduction 2

of Graphics Processing Units (GPUs) as an easy and affordable option as compared to
compute clusters. Especially when talking about performance per dollar, GPUs are very
inexpensive as found by Brodtkorb et al. (2013). Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using GPUs for weather simulation. In addition
to computer simulations, GPU acceleration also can be found in other places such as
networking (S. Han et al., 2010) or structural analysis of buildings (Georgescu et al.,
2013). These solutions were all developed using CUDA1. However, it is also possible to
develop assembly like code for GPUs using Parallel Thread Execution (PTX)2 to gain
more control.

1.2 Research Question
With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations, generated at runtime
for symbolic regression using GPUs. Therefore, the following research questions are
formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on GPUs?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a GPU than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
actually feasible. If it is feasible, it is important to evaluate if evaluating the expressions
on the GPU actually improves the performance over a parallelised CPU evaluator.
To answer if the GPU evaluator is faster than the CPU evaluator, the last research
question is important. As there are two major ways of implementing an evaluator on
the GPU, they need to be implemented and evaluated to finally state if evaluating
expressions on the GPU is faster and if so, which type of implementation results in the
best performance.

1.3 Thesis Structure
In order to answer the research questions, this thesis is divided into the following chap-
ters:
Chapter 2: Fundamentals and Related Work

In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

1https://developer.nvidia.com/cuda-toolkit
2https://docs.nvidia.com/cuda/parallel-thread-execution/

https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/parallel-thread-execution/

1. Introduction 3

Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
The details of the implementation with the used technologies are covered, such
as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. All three evaluators will be compared against each other
and the form of the expressions used for the comparisons are outlined. The com-
parison will not only include the time taken for the pure evaluation, but it will
also include the overhead, like PTX code generation. Finally, the results of the
comparison of the GPU and CPU evaluators are presented to show which of these
yields the best performance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.

Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning or symbolic
regression to establish common knowledge of the topic and problem this thesis is trying
to solve. First the field of equation learning is explored which helps to contextualise the
topic of this thesis. The main part of this chapter is split into two sub-parts. The first
part is exploring research that has been done in the field of general purpose computations
on the GPU (GPGPU) as well as the fundamentals of it. Focus lies on exploring how
graphics processing units (GPUs) are used to achieve substantial speed-ups and when
and where they can be effectively employed. The second part describes the basics of
how interpreters and compilers are built and how they can be adapted to the workflow
of programming GPUs. When discussing GPU programming concepts, the terminology
used is that of Nvidia and may differ from that used for AMD GPUs.

2.1 Equation learning
Equation learning is a field of research that can be used for understanding and discover-
ing equations from a set of data from various fields like mathematics and physics. Data
is usually much more abundant while models often are elusive which is demonstrated by
Guillemot (2022) where they explain how validating the models against large amounts
of data is a big part in creating such models. Because of this effort, generating equa-
tions with a computer can more easily lead to discovering equations that describe the
observed data. In one instance Werner et al. (2021) described that they want to find
an expression to predict the power loss of an electric machine based on known input
values. They used four inputs, direct and quadratic current as well as temperature and
motor speed, and they have an observed output which is the power loss. With the help
of an equation learner, they were able to generate useful results.

A more literal interpretation of equation learning is demonstrated by Pfahler and
Morik (2020). They use machine learning to learn the form of equations to simplify
the discovery of relevant publications. Instead of searching for keywords which might
differ from one field of research to another, they allow searching by the equations the
publications use. This helps as the form of equations stay the same over different fields
and are therefore not subject to specific terminology. However, this form of equation
learning is not relevant for this thesis.

4

2. Fundamentals and Related Work 5

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Using the evo-
lutionary algorithm genetic programming (GP) for different problems, including sym-
bolic regression, was first popularised by Koza (1994). He described that finding a
computer program to solve a problem for a given input and output, can be done by
traversing the search space of relevant solutions. This fits well for the goal of symbolic
regression, where a mathematical expression needs to be found to describe a problem
with specific inputs and outputs. Later, Koza (2010) provided an overview of results
that were generated with the help of GP and were competitive with human solutions,
showing how symbolic regression is a useful tool. In their book Symbolic Regression,
Kronberger et al. (2024) show how symbolic regression can be applied for real world
scenarios. One of these scenarios is finding simpler but still accurate models for hydro-
dynamic simulations to speed up the design process of ship hulls. Another one is finding
an expression to find the remaining capacity of a Lithium-ion battery by measuring
its voltage. In total, they described ten scenarios from different domains to show the
capabilities of symbolic regression.

Keijzer (2004), Gustafson et al. (2005), Korns (2011), Korns (2015), Bruneton (2025)
and many more presented ways of improving the quality of symbolic regression algo-
rithms, making symbolic regression more feasible for problem-solving. Bartlett et al.
(2024) describe an exhaustive approach for symbolic regression which can find the true
optimum for perfectly optimised parameters while retaining simple and interpretable
results.

Alternatives to GP for symbolic regression also exist with for example Bayesian Sym-
bolic Regression as proposed by Jin et al. (2020). Their approach increased the quality
of the results noticeably compared to GP alternatives by for example incorporating prior
knowledge. In order to avoid overfitting, Bomarito et al. (2022) have proposed a way of
using Bayesian model selection to combat overfitting and reduce the complexity of the
generated expressions. This also helps with making the expressions more generalisable
and therefore be applicable to unseen inputs.

Another alternative to meta-heuristics like GP is the usage of neural networks. One
such alternative has been introduced by Martius and Lampert (2016) where they used
a neural network for their equation learner with mixed results. Later, an extension has
been provided by Sahoo et al. (2018). They introduced the division operator, which
led to much better results. Further improvements have been described by Werner et al.
(2021) with their informed equation learner. By incorporating domain expert knowledge
they could limit the search space and find better solutions for particular domains. One
drawback of these three implementations is the fact that their neural networks are fixed.
An equation learner which can change the network at runtime and therefore evolve over
time is proposed by Dong et al. (2024). Their approach further improved the results of
neural network equation learners. In their work, Lemos et al. (2022) also used a neural
network for symbolic regression. They were able to find an equivalent to Newton’s law
of gravitation and rediscovered Newton’s second and third law only with trajectory data
of bodies of our solar system. Although these laws were already known, this research
has shown how neural networks and machine learning in general have great potential.

An implementation for an equation learner in the physics domain is proposed by
Brunton et al. (2016). Their algorithm was specifically designed for nonlinear dynamics

2. Fundamentals and Related Work 6

often occurring in physical systems. An improvement to this approach was introduced
by Sun et al. (2023) where they used Monte Carlo tree search. When compared to other
implementations their equation learner was able to create better results but has the
main drawback of high computational cost.

To generate an equation, first the operators need to be defined that make up the
equation. It is also possible to define a maximum length for an expression as proposed by
Koza (1994). Expressions also consist of constants as well as variables which represent
the inputs. Assuming that a given problem has two variables and one parameter, the
equation learner could generate an expression as seen in Equation 2.1 where 𝑥𝑛 are
the variables, 𝑝1 is the parameter and 𝑂 is the output which should correspond to the
observed output for the given variables.

𝑂 = 5− abs(𝑥1) + 𝑥2
√

𝑝1/10 (2.1)

A typical equation learner generates multiple expressions at once. If for example the
equation learner generates 300 expressions per GP generation, each of these expressions
needs to be evaluated at least once to determine how well they can produce the desired
output. Each expression lies in a different part of the search space and with only the
variables, it would not easily be possible to explore the surrounding search space. To
perform for example local search in this area, the parameter 𝑝1 can be used. This local
search phase helps to find the local or even global optimum. For example 50 local search
steps can be used, meaning that each expression needs to be evaluated 50 times with the
same variables, but different parameters. As a result, one GP generation consequently
requires a total 300 * 50 = 15 000 evaluations of the expressions. However, typically
more than one GP generation is needed to find a good local optimum. While the exact
number of generations is problem specific, for this example a total of 100 generations can
be assumed. Each generation again generates 300 expressions and needs to perform 50
local search steps. This results in a total of 300 * 50 * 100 = 1 500 000 evaluations which
need to be performed during the entire runtime of the GP algorithm. These values
have been taken from the equation learner for predicting discharge voltage curves of
batteries as described by Kronberger et al. (2024). Their equation learner converged
after 54 generations, resulting in 300 * 50 * 54 ≈ 800 000 evaluations. Depending on the
complexity of the generated expressions, performing all of these evaluations takes up a
lot of the runtime. Their results took over two days to compute on an eight core desktop
CPU. While they did not provide runtime information for all problems they tested, the
voltage curve prediction was the slowest. The other problems were in the range of a few
seconds and up to a day. Especially the problems that took several hours to days to
finish show, that there is still room for performance improvements. While a better CPU
with more cores can be used, it is interesting to determine, if using GPUs can yield
noticeable better performance.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many dif-
ferent applications. Originally they were designed to improve performance and visual
quality in games. Dokken et al. (2005) first described the usage of GPUs for general

2. Fundamentals and Related Work 7

purpose programming (GPGPU). They have shown how the graphics pipeline can be
used for GPGPU programming. Because this approach also requires the programmer to
understand the graphics terminology, this was not a great solution. Therefore, Nvidia
released CUDA1 in 2007 with the goal of allowing developers to program GPUs indepen-
dent of the graphics pipeline and terminology. A study of the programmability of GPUs
with CUDA and the resulting performance has been conducted by Huang et al. (2008).
They found that GPGPU programming has potential, even for non-embarassingly par-
allel problems.

Research is also done in making the low level CUDA development simpler. T. D.
Han and Abdelrahman (2011) have described a directive-based language to make de-
velopment simpler and less error-prone, while retaining the performance of handwritten
code. To drastically simplify CUDA development, Besard et al. (2019b) showed that
it is possible to develop with CUDA in the high level programming language Julia2

with similar performance to CUDA written in C. In a subsequent study W.-C. Lin and
McIntosh-Smith (2021) found, that high performance computing (HPC) on the CPU
and GPU in Julia performs similar to HPC development in C. This means that Julia can
be a viable alternative to Fortran, C and C++ in the HPC field. Additional Julia has
the benefit of developer comfort since it is a high level language with modern features
such as a garbage-collector. Besard et al. (2019a) have also shown how the combination
of Julia and CUDA help in rapidly developing HPC software. While this thesis in gen-
eral revolves around CUDA, there also exist alternatives by AMD called ROCm3 and a
vendor independent alternative called OpenCL4.

If not specified otherwise, the following section and its subsections use the infor-
mation presented by Nvidia (2025b) in their CUDA programming guide. While in the
early days of GPGPU programming a lot of research has been done to assess if this
approach is feasible, it now seems obvious to use GPUs to accelerate algorithms. GPUs
have been used early to speed up weather simulation models. Michalakes and Vachhara-
jani (2008) proposed a method for simulating weather with the Weather Research and
Forecast (WRF) model on a GPU. With their approach, they reached a speed-up of 5
to 2 for the most compute intensive task, with little GPU optimisation effort. They also
found that the GPU usage was low, meaning there are resources and potential for more
detailed simulations.

Generally, simulations are great candidates for using GPUs, as they can benefit heav-
ily from a high degree of parallelism and data throughput. Köster et al. (2020b) have
developed a way of using adaptive time steps on the GPU to considerably improve the
performance of numerical and discrete simulations. In addition to the performance gains
they were able to retain the precision and constraint correctness of the simulation. Black
hole simulations are crucial for science and education for a better understanding of our
world. Verbraeck and Eisemann (2021) have shown that simulating complex Kerr (rotat-
ing) black holes can be done on consumer hardware in a few seconds. Schwarzschild black
hole simulations can be performed in real-time with GPUs as described by Hissbach et
al. (2022) which is especially helpful for educational scenarios. While both approaches

1https://developer.nvidia.com/cuda-toolkit
2https://julialang.org/
3https://www.amd.com/de/products/software/rocm.html
4https://www.khronos.org/opencl/

https://developer.nvidia.com/cuda-toolkit
https://julialang.org/
https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/

2. Fundamentals and Related Work 8

do not have the same accuracy as detailed simulations on supercomputers, they show
how a single GPU can yield similar accuracy at a fraction of the cost.

Software network routing can also heavily benefit from GPU acceleration as shown
by S. Han et al. (2010), where they achieved a significantly higher throughput than with
a CPU only implementation.

Finite element structural analysis is an essential tool for many branches of engineer-
ing and can also heavily benefit from the usage of GPUs as demonstrated by Georgescu
et al. (2013).

Generating test data for DeepQ learning can also significantly benefit from using
the GPU (Köster et al., 2022).

However, it also needs to be noted, that GPUs are not always better performing
than CPUs as illustrated by Lee et al. (2010), so it is important to consider if it is worth
using GPUs for specific tasks.

2.2.1 Programming GPUs
The development process on a GPU is vastly different from a CPU. A CPU has tens
or hundreds of complex cores with the AMD Epyc 99655 having 192 cores and twice
as many threads. To demonstrate how a modern CPU works Knuth (1999) introduced
the MMIX architecture. It is a 64-bit CPU architecture containing many concepts and
design decisions to compete with other CPUs on the market at that time. He provides
the information in great detail and demonstrates the complexity of CPU architectures.
Current CPUs are even more complex, and often contain features like sophisticated
branch prediction among other things to achieve higher and higher performance. This
makes a CPU perfect for handling complex control flows on a single program thread
and even multiple threads simultaneously (Palacios & Triska, 2011). However, as seen
in Section 2.2, this often is not enough. On the other hand, a GPU contains thousands
or even tens of thousands of cores. For example, the GeForce RTX 50906 contains a
total of 21 760 CUDA cores. To achieve this enormous core count, a single GPU core
has to be much simpler than a single CPU core. As described by Nvidia (2025b), a GPU
designates much more transistors towards floating-point computations. This, however,
results in less efficient integer arithmetic and control flow handling. There is also less
Cache available per core and clock speeds are usually also much lower than those on a
CPU. An overview of the differences of a CPU and a GPU architecture can be seen in
Figure 2.1.

Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice
when considering improving the performance of an algorithm. Because of the high num-
ber of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD
architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states
that there is a single stream of instructions that is executed on a huge number of data
streams. Franchetti et al. (2005) and Tian et al. (2012) describe ways of using SIMD
instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7
respectively by using SIMD instructions instead of serial computations. Extending this
to GPUs which are specifically built for SIMD/data parallel calculations shows why

5https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
6https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

2. Fundamentals and Related Work 9

Figure 2.1: Overview of the architecture of a CPU (left) and a GPU (right). Note the
higher number of simpler and smaller cores on the GPU (Nvidia, 2025b).

they are so powerful despite having less complex and slower cores than a CPU. It is also
important to note, that a GPU also always needs a CPU, as the CPU is responsible for
sending the data to the GPU and starting the GPU program. In GPGPU programming,
the CPU is usually called the host, while the GPU is usually called the device.

Thread Hierarchy and Tuning

The thousands of cores on a GPU, as well as the threads created by the developer, are
grouped together in several categories. This is the so-called thread hierarchy of GPUs.
The developer can influence this grouping to a degree which allows them to tune their
algorithm for optimal performance. In order to develop a well performing algorithm, it
is necessary to know how this grouping works. Tuning the grouping is unique to each
algorithm and also dependent on the GPU used, which means it is important to test a
lot of different configurations to achieve the best possible result. This section aims at
exploring the thread hierarchy and how it can be tuned to fit an algorithm.

At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is
a hardware unit responsible for scheduling and executing threads and also contains
the registers used by these threads. An SM is always executing a group of 32 threads
simultaneously, and this group is called a warp. The number of threads that can be
started is virtually unlimited. However, threads must be grouped in a block, with one
block typically containing a maximum of 1024 threads but is often configured to be less.
Therefore, if more than 1024 threads are required, more blocks must be created. Blocks
can also be grouped into thread block clusters which is optional, but can be useful in
certain scenarios. All thread blocks or thread block clusters are part of a grid, which
manifests as a dispatch of the code run on the GPU, also called kernel (AMD, 2025b).
All threads in one block have access to some shared memory, which can be used for
L1 caching or communication between threads. It is important that the blocks can be

2. Fundamentals and Related Work 10

Figure 2.2: An overview of the thread hierarchy with blocks being split into multiple
warps and their shared memory (AMD, 2025b).

scheduled independently, with no dependencies between them. This allows the scheduler
to schedule blocks and threads as efficiently as possible. All threads within a warp are
guaranteed to be part of the same block, and are therefore executed simultaneously and
can access the same memory addresses. Figure 2.2 depicts how threads in a block are
grouped into warps for execution and how they shared memory.

A piece of code that is executed on a GPU is written as a kernel which can be
configured. The most important configuration is how threads are grouped into blocks.
The GPU allows the kernel to allocate threads and blocks and block clusters in up to
three dimensions. This is often useful because of the already mentioned shared memory,
which will be explained in more detail in Section 2.2.1. Considering the case where an
image needs to be blurred, it not only simplifies the development if threads are arranged
in a 2D grid, it also helps with optimising memory access. As the threads in a block, need
to access a lot of the same data, this data can be loaded in the shared memory of the
block. This allows the data to be accessed much quicker compared to when threads are
allocated in only one dimension. With one dimensional blocks it is possible that threads
assigned to nearby pixels, are part of a different block, leading to a lot of duplicate

2. Fundamentals and Related Work 11

data transfer. The size in each dimension of a block can be almost arbitrary within the
maximum allowed number of threads. However, blocks that are too large might lead to
other problems which are described in more detail in Section 2.2.1.

Once a kernel is dispatched, all threads start at the same point in a program. How-
ever, because a thread may encounter instructions, such as branches, where it can take a
different path to the other threads, or in other words diverge, each thread has a unique
instruction pointer. This allows threads to work independently, even if they are part
of the same warp. However, because of the SIMD architecture, all threads in a warp
must execute the same instructions and if threads start to diverge, the SM must pause
threads with different instructions and execute them later. Figure 2.3 shows how such
divergences can impact performance. The situation described in the figure also shows,
that the thread could re-converge after the divergence. On older hardware this does not
happen and results in T2 being executed after T1 and T3 have finished. In situations
where there is a lot of data dependent thread divergence, most of the benefits of us-
ing a GPU are likely to be lost. Threads not executing the same instruction is strictly
speaking against the SIMD principle, but can happen in reality, due to data dependent
branching. Consequently, this leads to poor resource utilisation, which in turn leads to
poor performance. Another way in which threads can be paused (inactive threads) is the
fact that sometimes, the number of threads started is not divisible by 32. In such cases,
the last warp still contains 32 threads but only the threads with work are executed.

Modern GPUs implement what is known as the Single-Instruction Multiple-Thread
(SIMT) architecture. In many cases a developer does not need to know the details of
SIMT and can design fast, correct and accurate programs with just the SIMD architec-
ture in mind. However, leveraging the power of SIMT can yield substantial performance
gains by re-converging threads after data-dependent divergence has occurred. SIMT can
also help with increasing the occupancy of the GPU. Occupancy and its importance to
performance is discussed in detail in Section 2.2.1.

A stack-less re-convergence algorithm was proposed by Collange (2011) as an alter-
native to the default stack-based re-convergence algorithm. Their algorithm was able
to achieve higher performance than the default one. Another approach for increasing
occupancy using the SIMT architecture is proposed by Fung and Aamodt (2011). They
introduced a technique for compacting thread blocks by moving divergent threads to
new warps until they re-converge. This approach resulted in a noticeable speed-up be-
tween 17% and 22%. Another example where a SIMT aware algorithm can perform
better was proposed by Köster et al. (2020a). While they did not implement techniques
for thread re-convergence, they implemented a thread compaction algorithm. On data-
dependent divergence it is possible for threads to end early, leaving a warp with only
partial active threads. This means the inactive threads are still occupied and cannot be
used for other work. Their thread compaction tackles this problem by moving active
threads into a new thread block, releasing the inactive threads to perform other work.
With this they were able to gain a speed-up of roughly 4 times compared to previous
implementations. Adapting Multiple-Instruction Multiple-Data (MIMD) programs with
synchronisation to run on SIMT architecture can be a difficult task, especially if the
underlying architecture is not well understood. A static analysis tool and a transformer
specifically designed to help avoid deadlocks with MIMD synchronisation is proposed by
ElTantawy and Aamodt (2016). In addition, they proposed a hardware re-convergence

2. Fundamentals and Related Work 12

Figure 2.3: Thread T2 wants to execute instruction B while T1 and T3 want to execute
instruction A. Therefore T2 will be an inactive thread this cycle and active once T1 and
T3 are finished. This means that now the divergent threads are serialised.

mechanism that supports MIMD synchronisation. A survey by Khairy et al. (2019) ex-
plores different aspects of improving GPGPU performance architecturally. Specifically,
they have compiled a list of different publications discussing algorithms for thread re-
convergence, thread compaction and much more. Their main goal was to give a broad
overview of many ways to improve the performance of GPGPU programming to help
other developers.

Memory Model

On a GPU there are two parts that contribute to the performance of an algorithm. The
one already looked at is the compute-portion of the GPU. This is necessary because if
threads are serialised or run inefficiently, there is nothing that can make the algorithm
execute faster. However, algorithms run on a GPU usually require huge amounts of
data to be processed, as they are designed for exactly that purpose. The purpose of this
section is to explain how the memory model of the GPU works and how it can influence
the performance of an algorithm. In Figure 2.4 the memory layout and the kinds of
memory available are depicted. The different parts will be explained in this section.

On a GPU there are multiple levels and kinds of memory available. All these levels
and kinds have different purposes they are optimised for. This means that it is important
to know what they are and how they can be best used for specific tasks. On the lowest

2. Fundamentals and Related Work 13

Figure 2.4: The layout of the memory in the GPU. The connections between the memory
regions can be seen as well as the different kinds of memory available.

level, threads have registers and local memory available. Registers are the fastest way to
access memory, but they are also the least abundant memory with up to a maximum of
255 32-Bit registers per thread on Nvidia GPUs and 256 on AMD GPUs (AMD, 2025a).
However, using all registers of a thread can lead to other problems which are described
in more detail in Section 2.2.1. In contrast to registers, local memory is significantly
slower. This is due to the fact, that local memory is actually stored in global memory and
therefore has the same limitations as explained later. This means that it is important to
try and avoid local memory as much as possible. Local memory is usually only used when
a thread is using too many registers. The compiler will then spill the remaining data
into local memory and load it into registers once needed, slowing down the application
drastically.

Shared memory is the next tier of memory on a GPU. Unlike local memory and
registers, shared memory is shared between all threads inside a block. The amount of
shared memory is depending on the GPU architecture but for Nvidia it hovers at around
100 Kilobyte (KB) per block. While this memory is slower than registers, its primary
use-case is communicating and sharing data between threads in a block. If all threads in
a block access a lot of overlapping data this data can be loaded from global memory into
faster shared memory once. It can then be accessed multiple times, further increasing

2. Fundamentals and Related Work 14

performance. Loading data into shared memory and accessing that data has to be done
manually. Because shared memory is part of the unified data cache, it can either be used
as a cache or for manual use, meaning a developer can allocate more shared memory
towards caching if needed. Another feature of shared memory are the so-called memory
banks. Shared memory is always split into 32 equally sized memory modules also called
memory banks. All available memory addresses lie in one of these banks. This means if
two threads access two memory addresses which lie in different banks, the access can
be performed simultaneously, increasing the throughput.

The most abundant and slowest memory is the global memory and resides in device
memory. A key constraint of device memory and therefore global memory is, that can
only be accessed in either 32, 64 or 128 byte chunks. This means if a thread wants
to access 8 bytes from global memory, alongside the 8 bytes, the 24 bytes after the
requested 8 bytes are also transferred. As a result, the throughput is only a fourth of
the theoretical maximum. Therefore, it is important to follow optimal access patterns.
What these optimal patterns are, are architecture dependent and are described in the
according sections in the CUDA programming guide.

A small portion of device memory is allocated to constant memory. Constant memory
is accessible by all threads and as the name implies, can not be written to by threads.
It can be initialised by the CPU when starting a kernel if needed. As constant memory
has a separate cache, it can be used to speed-up data access for constant and frequently
accessed data.

Another special kind of memory is the texture and surface memory. According to
AMD (2025b) texture memory is read-only memory, while surface memory can also be
written to, which is the only difference between these two kinds of memory. Nvidia does
not explicitly state this behaviour, but due to the fact that accessing textures is only
performed via caches, it is implied that on Nvidia GPUs, texture memory is also read-
only. As the name implies, this kind of memory is optimised for accessing textures. This
means that threads of the same warp, accessing data which is spatially close together,
will result in increased performance. As already mentioned, surface memory works the
same way, with the difference, that it can be written to. It is therefore well suited for
manipulating two- or three-dimensional data.

Occupancy

Occupancy describes the utilisation of a GPU. A high occupancy means, that there are
Warps executing, or in other words, the cores are occupied with work. This is impor-
tant, as a low occupancy means that the GPU is waiting for work to be scheduled and is
therefore idle. As a result, it is desired to achieve high occupancy in order to increase the
performance of an algorithm. It needs to be noted, that occupancy is not the only op-
tion for improving performance. As it is possible for the GPU to have a high occupancy
while performing a lot of unnecessary or redundant work or utilising compute-resources
that are slower. An example for the latter would be developing an algorithm that uses
64-bit floating point (FP64) numbers while 32-bit floating point (FP32) numbers would
have sufficient accuracy. Because GPUs tend to have fewer FP64 compute-resources
than they have FP32 compute-resources, performing FP64 operations will take longer.
However, despite these drawbacks, having low occupancy will very likely result in per-

2. Fundamentals and Related Work 15

Compute Capability 8.9 10.x
Max. number of threads per block 1 024
Warp size 32 threads
Max. number of warps per SM 48 64
Max. number of blocks per SM 24 32
Max. number of threads per SM 1 536 2 048
Number of 32-bit registers per SM 64 000
Max. number of 32-bit registers per block 64 000
Max. number of 32-bit registers per thread 255
Max. amount of shared memory per SM 100 Kilobytes 228 Kilobytes
Max. amount of shared memory per block 99 Kilobytes 227 Kilobytes

Table 2.1: A simplified version of the technical specifications for the Compute Capa-
bilities 8.9 and 10.x (Nvidia, 2025b). These correspond to the Nvidia Ada Lovelace and
Blackwell microarchitectures.

formance degradation while high occupancy will either improve performance or do no
harm otherwise. Ways of achieving high occupancy will be outlined in this section as
most other performance problems can be solved algorithmically.

When starting a kernel, the most important configuration is the number of threads
and thread blocks that need to be started. This is important, as this has other effects
on occupancy as well. In Table 2.1 the most notable limitations are presented that
can affect occupancy. These limitations need to be considered when choosing a kernel
configuration. It is important to note, that depending on the GPU and problem, the
occupancy tuning might differ, and the same approach might perform well on one GPU
but perform poorly on another GPU. Therefore, the things discussed here are only
guidelines.

Tools like Nvidia Nsight Compute7 and Nsight Systems8 are essential for perfor-
mance tuning. Nsight compute also contains an occupancy calculator which takes a
kernel and computes how the configuration performs in terms of occupancy and also
lets the developer try out different configurations (Nvidia, 2025c).

In general, it is important to have as many warps as possible ready for execution.
While this means that a lot of warps could be executed but are not, this is actually
desired. A key feature of GPUs is so-called latency hiding, meaning that while a warp
waits for data to be retrieved for example, another warp ready for execution can now be
run. With low occupancy, and therefore little to no warps waiting for execution, latency
hiding does not work, as now the hardware is idle. As a result, the runtime increases
which also explains why high occupancy is not guaranteed to result in performance
improvements while low occupancy can and often will increase the runtime.

As seen in Table 2.1, there exist different limitations that can impact occupancy.
The number of warps per SM is important, as this means this is the degree of parallelism
achievable per SM. If due to other limitations, the number of warps per SM is below
the maximum, there is idle hardware. One such limitation is the number of registers per

7https://developer.nvidia.com/nsight-compute
8https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems

2. Fundamentals and Related Work 16

block and SM. In the case of compute capability 8.9, one SM can handle 32*48 = 1 536
threads. This leaves 64 000/1 536 ≈ 41 registers per thread, which is lower than the
theoretical maximum of 255 registers per thread. Typically, one register is mapped to
one variable in the kernel code, meaning a developer can use up to 41 variables in their
code. However, if the variable needs 64 bits to store its value, the register usage doubles,
as all registers on a GPU are 32-bit. On a GPU with compute capability 10.x a developer
can use up to 64 000/2 048 ≈ 31 registers. Of course a developer can use more registers,
but this results in less occupancy. However, depending on the algorithm using more
registers might be more beneficial to performance than the lower occupancy, in which
case occupancy is not as important. If a developer needs more than 255 registers for
their variables the additional variables will spill into local memory which is, as described
in Section 2.2.1, not desirable.

Additionally, shared memory consumption can also impact the occupancy. If for
example a block needs all the available shared memory, which is almost the same as
the amount of shared memory per SM, this SM can only serve this block. On compute
capability 10.x, this would mean that occupancy would be at maximum 50% as a block
can have up to 1 024 threads while an SM supports up to 2 048 threads. Again, in such
cases it needs to be determined, if the performance gain of using this much shared
memory is worth the lower occupancy.

Balancing these limitations and therefore the occupancy and performance often re-
quires a lot of trial and error with help of the aforementioned tools. In cases where
occupancy is already high and the amount of warps ready for execution is also high,
other areas for performance improvements need to be explored. Algorithmic optimisa-
tion is always a good idea. Some performance improvements can be achieved by altering
the computations to use different parts of the GPU. One of such optimisations is using
FP32 operations wherever possible. Another well suited optimisation is to rewrite the
algorithm to use as many Fused Multiply-Add (FMA) instructions. FMA is a special
floating point instruction, that multiplies two values and adds a third, all in a single
clock cycle (Nvidia, 2025a). However, the result might slightly deviate compared to per-
forming these two operations separately, which means in accuracy sensitive scenarios,
this instruction should be avoided. If the compiler detects a floating point operation
with the FMA structure, it will automatically be compiled to an FMA instruction. To
prevent this, in C++ the developer can call the functions __fadd_ and __fmul_ for
addition and multiplication respectively.

2.2.2 Parallel Thread Execution
While in most cases a GPU can be programmed in a higher level language like C++
or even Julia9, it is also possible to program GPUs with the low level language Parallel
Thread Execution (PTX) developed by Nvidia. A brief overview of what PTX is and
how it can be used to program GPUs is given in this section. Information in this section
is taken from the PTX documentation (Nvidia, 2025d) if not stated otherwise.

PTX defines a virtual machine with an own instruction set architecture (ISA) and
is designed for data-parallel processing on a GPU. It is an abstraction of the underlying
hardware instruction set, allowing PTX code to be portable across Nvidia GPUs. In

9https://juliagpu.org/

https://juliagpu.org/

2. Fundamentals and Related Work 17

order for PTX code to be usable for the GPU, the driver is responsible for compiling
the code to the hardware instruction set of the GPU it is run on. A developer typically
writes a kernel in CUDA using C++, for example, and the Nvidia compiler generates
the PTX code for that kernel. This PTX code is then compiled by the driver once it
is executed. The concepts for programming the GPU with PTX and CUDA are the
same, apart from the terminology which is slightly different. For consistency, the CUDA
terminology will continue to be used.

Syntactically, PTX is similar to assembler style code. Every PTX code must have a
.version directive which indicates the PTX version and is immediately followed by the
.target directive which indicates the compute capability. If the program needs 64-bit
addresses instead of the default 32-bit addresses, the optional .address_size directive
can be used to indicate this. Using 64-bit addresses enables the developer to access
more than 4 GB of memory but also increases register usage, as a 64-bit address must
be stored in two registers.

After these directives, the actual code is written. As each PTX code needs an en-
try point (the kernel) the .entry directive indicates the name of the kernel and the
parameters needed. It is also possible to write helper functions with the .func direc-
tive. Inside the kernel or a helper function, normal PTX code can be written. Because
PTX is very low level, it assumes an underlying register machine, therefore a developer
needs to think about register management. This includes loading data from global or
shared memory into registers if needed. Code for manipulating data like addition and
subtraction generally follow the structure operation.datatype followed by up to four
parameters for that operation. For adding two FP32 values together and storing them
in the register %n, the code looks like the following:

add.f32 %n, 0.1, 0.2;

Loops in the classical sense do not exist in PTX. Instead, a developer needs to define
jump targets for the beginning and end of the loop. The Program in 2.1 shows how a
function with simple loop can be implemented. The loop counts down to zero from the
passed parameter 𝑁 which is loaded into the register %n in line 6. If the value in the
register %n reached zero the loop branches at line 9 to the jump target at line 12 and
the loop has finished. All other used directives and further information on writing PTX
code can be taken from the PTX documentation (Nvidia, 2025d).

2.3 Compilers
Compilers are a necessary tool for many developers. If a developer wants to run their
program it is very likely they need one. As best described by Aho et al. (2006) in their
dragon book, a compiler takes code written by a human in some source language and
translates it into a destination language readable by a computer. This section briefly
explores what compilers are and research done in this old field of computer science.
Furthermore, the topics of transpilers and interpreters are explored, as their use-cases
are very similar.

Aho et al. (2006) and Cooper and Torczon (2022) describe how a compiler can be
developed, with the latter focusing on more modern approaches. They describe how a
compiler consists of two parts, the analyser, also called frontend, and the synthesiser

2. Fundamentals and Related Work 18

1 .func loop(.param .u32 N)
2 {
3 .reg .u32 %n;
4 .reg .pred %p;
5
6 ld.param.u32 %n, [N];
7 Loop:
8 setp.eq.u32 %p, %n, 0;
9 @%p bra Done;

10 sub.u32 %n, %n, 1;
11 bra Loop;
12 Done:
13 }

Program 2.1: A PTX program fragment depicting how loops can be implemented.

also called backend. The frontend is responsible for ensuring syntactic and semantic
correctness and converts the source code into an intermediate representation, an abstract
syntax tree (AST), for the backend. Generating code in the target language, from the
intermediate representation is the job of the backend. This target code can be assembly
or anything else that is needed for a specific use-case. This intermediate representation
also makes it simple to swap out frontends or backends. The Gnu Compiler Collection
GCC (2025) takes advantage of using different frontends to provide support for many
languages including C, C++, Ada and more. Instead of compiling source code for specific
machines directly, many languages compile code for virtual machines instead. Notable
examples are the Java Virtual Machine (JVM) (Lindholm et al., 2025) and the low
level virtual machine (LLVM) (Lattner & Adve, 2004). Such virtual machines provide
a bytecode which can be used as a target language for compilers. A huge benefit of
such virtual machines is the ability for one program to be run on all physical machines
the virtual machine exists for, without the developer needing to change that program
(Lindholm et al., 2025). Programs written for virtual machines are compiled into their
respective bytecode. This bytecode can then be interpreted or compiled to physical
machine code and then be run. According to the JVM specification Lindholm et al.
(2025) the Java bytecode is interpreted and also compiled with a just-in-time (JIT)
compiler to increase the performance of code blocks that are often executed. On the
other hand, the common language runtime (CLR)10, the virtual machine for languages
like C#, never interprets the generated bytecode. As described by Microsoft (2023) the
CLR always compiles the bytecode to physical machine code using a JIT compiler before
it is executed.

2.3.1 Interpreters
Interpreters are a different kind of program for executing source code. Rather than com-
piling the code and executing the result, an interpreter executes the source code directly.
Languages like Python and JavaScript are prominent examples of interpreted languages,
but also Java, or more precise Java-Bytecode, is also interpreted before it gets compiled

10https://learn.microsoft.com/en-us/dotnet/standard/clr

https://learn.microsoft.com/en-us/dotnet/standard/clr

2. Fundamentals and Related Work 19

Figure 2.5: A simplified overview of how the architecture of a compiler looks, using Flex
and Bison.

(Lindholm et al., 2025). However, interpreters can not only be used for interpreting pro-
gramming languages. It is also possible for them to be used in GP. Langdon and Banzhaf
(2008) have shown how a SIMD interpreter can be efficiently used for evaluating entire
GP populations on the GPU directly. In a later work Cano and Ventura (2014) further
improved this interpreter. They used the fact that a GP individual represents a tree
which can be split into independent subtrees. These can be evaluated concurrently and
with the help of communication via shared memory, they were able to evaluate the en-
tire tree. With this they achieved a significant performance improvement over previous
implementations. As shown by Dietz and Young (2010), it is even possible to develop
an interpreter that can execute MIMD programs on a SIMD GPU. However, as noted
by the authors, any kind interpretation comes with an overhead. This means that with
the additional challenges of executing MIMD programs on SIMD hardware, their in-
terpreter, while achieving reasonable efficiency, still suffers from performance problems.
Another field where interpreters can be useful are rule-based simulations. Köster et al.
(2020a) has shown how they implemented a GPU interpreter for such simulations. In
addition with other novel performance improvements in running programs on a GPU,
they were able to gain a speed-up of 4 over non-interpreted implementations. While
publications like Fua and Lis (2020) and Gherardi et al. (2012) have shown, interpreted
languages often trail behind in terms of performance compared to compiled languages,
interpreters per se are not slow. And while they come with performance overhead as
demonstrated by Dietz and Young (2010) and Romer et al. (1996), they can still be a
very fast, easy and powerful alternative for certain tasks.

2. Fundamentals and Related Work 20

2.3.2 Transpilers
With the concepts already mentioned, it is possible to generate executable code from
code written in a programming language. However, sometimes it is desired to convert a
program from one programming language to another and therefore the major difference
between these use-cases is the backend. A popular transpiler example is the TypeScript
transpiler, which transforms TypeScript source code into JavaScript source code (Mi-
crosoft, 2025). Other examples for transpilers are the C2Rust transpiler (Ling et al.,
2022) that transpiles C code into Rust code as well as the PyJL transpiler (Marcelino
& Leitão, 2022) which transpiles Python code into Julia code. Chaber and Ławryńczuk
(2016) proposed a transpiler that takes MATLAB and C code and transforms it into
pure and optimised C code for an STM32 microcontroller. An early example for a tran-
spiler has been developed by Intel (1978) where they built a transpiler for transforming
assembly code for their 8080 CPU to assembly code for their 8086 CPU. Transpilers can
also be used in parallelisation environments, like OpenMP (C.-K. Wang & Chen, 2015).
There also exists a transpiler that transforms CUDA code into highly parallel CPU
code. Moses et al. (2023) described this transpiler, and they found that the generated
code performs noticeably better than doing this transformation by hand. When design-
ing complex processors and accelerators, Register-transfer level (RTL) simulations are
essential (L.-T. Wang et al., 2009). In a later study Zhang et al. (2020) have shown how
RTL simulations can be performed on GPUs with a speed-up of 20. This led to D.-L.
Lin et al. (2023) developing a transpiler to transform RTL into CUDA kernels instead
of handwriting them. The compared their results with a CPU implementation running
on 80 CPUs, where they found that the transpiled CUDA version was 40 times faster.
Using transpilers for software backend and business logic has been proposed by Bastidas
Fuertes et al. (2023a). Their approach implemented a programming language that can
be transpiled into different programming languages, for usage in a multi-programming-
language environment that share some business logic. In another study, Bastidas Fuertes
et al. (2023b) reviewed over 600 publications to map the use of transpilers alongside
their implementations in different fields of research, demonstrating the versatility of
transpiler use.

Chapter 3

Concept and Design

To be able to determine whether evaluating mathematical expressions on the GPU is
better suited than on the CPU, a prototype needs to be implemented. More specifically,
a prototype for interpreting these expressions on the GPU, as well as a prototype that
transpiles expressions into code that can be executed by the GPU. The goal of this
chapter, is to describe how these two prototypes can be implemented conceptually. First
the requirements for the prototypes as well as the data they operate on are explained.
This is followed by the design of the interpreter and the transpiler. The CPU interpreter
will not be described, as it already exists.

3.1 Requirements and Data
The main goal of both prototypes or evaluators is to provide a speed-up compared to
the CPU interpreter already in use. However, it is also important to determine which
evaluator provides the most speed-up. This also means that if one of the evaluators is
faster, it is intended to replace the CPU interpreter. Therefore, they must have similar
capabilities, and therefore meet the following requirements:

• Multiple expressions as input.
• All input expressions have the same number of variables (𝑥𝑛), but can have a

different number of parameters (𝑝𝑛).
• The variables are parametrised using a matrix of the form 𝑘 ×𝑁 , where 𝑘 is the

number of variables in the expressions and 𝑁 is the number of different parametri-
sations for the variables. This matrix is the same for all expressions.

• The parameters are parametrised using a vector of vectors. Each vector 𝑣𝑖 corre-
sponds to an expression 𝑒𝑖.

• The following operations must be supported: 𝑥+𝑦, 𝑥−𝑦, 𝑥*𝑦, 𝑥/𝑦, 𝑥𝑦, |𝑥|, log(𝑥),
𝑒𝑥 and

√
𝑥. Note that 𝑥 and 𝑦 can either stand for a value, a variable, or another

operation.
• The results of the evaluations are returned in a matrix of the form 𝑘×𝑁 . In this

case, 𝑘 is equal to the 𝑁 of the variable matrix and 𝑁 is equal to the number of
input expressions.

With this, the required capabilities are outlined. However, for a better understand-

21

3. Concept and Design 22

Figure 3.1: This diagram shows how the input and output looks like and how they
interact with each other.

ing, the input and output data need to be explained further. The first input contains
the expressions that need to be evaluated. These can be of any length and can con-
tain constant values, variables and parameters, all of which are linked together with
the supported operations. In the simplified example shown in Figure 3.1, there are six
expressions 𝑒1 to 𝑒6.

Next is the variable matrix. An entry in this matrix corresponds to one variable in
every expression. The row indicates which variable it holds the value for. For example
the values in row three, are used to parameterise the variable 𝑥3. Each column holds a
different set of variables. Each expression must be evaluated using each set of variables.
In the provided example, there are three variable sets, each containing the values for
four variables 𝑥1 to 𝑥4.

After all expressions have been evaluated using all variable sets, the results of these
evaluations must be stored in the result matrix. Each entry in this matrix holds the
result of the evaluation of one expression parameterised with one variable set. The row
indicates the variable set and the column indicates the expression.

The prototypes developed in this thesis, are part of a GP algorithm for symbolic
regression. This means that the expressions that are evaluated, represent parts of the

3. Concept and Design 23

search space of all expressions being made up of any combination of allowed operators,
the set of input variables, a set of parameters and constants. This means that the size of
the search space grows exponentially. Exploring this search space by simply generating
expressions, evaluating them once and then generating the next set of expressions leaves
much of the search space unexplored. To combat this, parameters are introduced. These
allow the algorithm to perform some kind of local search. To enable this, the prototypes
must support not only variables, but also parameters.

The parameters themselves are unique to each expression, meaning they have a
one-to-one mapping to an expression. Furthermore, as can be seen in Figure 3.1, each
expression can have a different number of parameters, or even no parameters at all.
However, with no parameters, it wouldn’t be possible to perform parameter optimisa-
tion. This is in contrast to variables, where each expression must have the same number
of variables. Because parameters are unique to each expression and can vary in size,
they are not structured as a matrix, but as a vector of vectors.

An important thing to consider, is the volume and volatility of the data itself. The
example used above has been drastically simplified. It is expected, that there are hun-
dreds of expressions evaluate per GP generation. Each of these expressions may contain
between ten and 50 tokens. A token is equivalent to either a variable, a parameter, a
constant value or an operator.

Usually, the number of variables per expression is around ten. However, the number
of variable sets can increase drastically. It can be considered, that 1 000 variable sets
is the lower limit. On the other hand, 100 000 can be considered as the upper limit.
Considering that one variable takes up 4 bytes of space and 10 variables are needed per
expression, at least 4 * 10 * 1 000 = 40 000 bytes and at most 4 * 10 * 100 000 = 400 000
bytes need to be transferred to the GPU for the variables.

These variables do not change during the runtime of the symbolic regression algo-
rithm. As a result the data only needs to be sent to the GPU once. This means that the
impact of this data transfer is minimal. On the other hand, the data for the parameters
is much more volatile. As explained above, they are used for parameter optimisation
and therefore vary from evaluation to evaluation and need to be sent to the GPU very
frequently. However, the amount of data that needs to be sent is also much smaller.
TODO: ONCE I GET THE DATA SEE HOW MANY BYTES PARAMETERS TAKE
ON AVERAGE

3.2 Architecture
Based on the requirements and data structure above, the architecture of both proto-
types can be designed. While the requirements only specify the input and output, the
components and workflow also need to be specified. This section aims at giving an
architectural overview of both prototypes, alongside their design decisions.

A design decision that has been made for both prototypes is to split the evaluation
of each expression into a separate kernel or kernel dispatch as seen in Figure 3.2. As
explained in Section 2.2.1, it is desirable to reduce the occurrence of thread divergence as
much as possible. Although the SIMT programming model tries to mitigate the negative
effects of thread divergence, it is still a good idea to avoid it when possible. For this
use-case, thread divergence can easily be avoided by not evaluating all expressions in

3. Concept and Design 24

Figure 3.2: The interpreter has one kernel that is dispatched multiple times, while the
transpiler, has multiple kernels that are dispatched once. This helps to eliminate thread
divergence.

a single kernel or kernel dispatch. GPUs are able to have multiple resident grids, with
modern GPUs being able to accommodate 128 grids concurrently (Nvidia, 2025b). One
grid corresponds to one kernel dispatch, and therefore allows up-to 128 kernels to be run
concurrently. Therefore, dispatching a kernel for each expression, further increases GPU
utilisation. In the case of the interpreter, having only one kernel that can be dispatched
for each expression, also simplifies the kernel itself. This is because the kernel can focus
on evaluating one expression and does not require additional code to handle multiple
expressions at once. Similarly, the transpiler can also be simplified, as it can generate
many smaller kernels rather than one big kernel. Additionally, the smaller kernels do not
need any branching, because the generated code only needs to perform the operations
as they occur in the expression itself. This also reduces the overhead on the GPU. One
drawback of generating a kernel for each expression, is the generation itself. Especially
for smaller variable sets, it is possible, that the time it takes to transpile an expression
is greater than the time it takes to evaluate it. However, for larger variable sets this
should not be a concern.

3.2.1 Pre-Processing
The first step in both prototypes is the pre-processing step. It is needed, as it simplifies
working with the expressions in the later steps. One of the responsibilities of the pre-
processor is to verify that only allowed operators and symbols are present in the given
expressions. This is comparable to the work a scanner like Flex1 performs. Secondly,
this step also converts the expression into an intermediate representation. In essence,
the pre-processing step can be compared to the frontend of a compiler as described in
Section 2.3. If new operators are required, the pre-processor must be extended as well.

1https://github.com/westes/flex

https://github.com/westes/flex

3. Concept and Design 25

Figure 3.3: This diagram shows how an expression will be transformed in the pre-
processing step.

Otherwise, expressions containing these operators would be treated as invalid and never
reach the evaluator.

The conversion into the intermediate representation transforms the expressions from
infix-notation into postfix notation. This further allows the later parts to more easily
evaluate the expressions. One of the major benefits of this notation is the implicit
operator precedence. It allows the evaluators to evaluate the expressions token by token
from left to right, without needing to worry about the correct order of operations. One
token represents either an operator, a constant value, a variable or a parameter. Apart
from the intermediate representation containing the expression in postfix notation, it
also contains information about the types of the tokens themselves. This is all that is
needed for the interpretation and transpilation steps. A simple expression like 𝑥 + 2
would look like depicted in figure 3.3 after the pre-processing step.

It would have also been possible to perform the pre-processing step on the GPU.
However, pre-processing only one expression can not easily be split into multiple threads,
which means one GPU thread would need to process one expression. As described in
Section 2.2 a single GPU thread is slower than a single CPU thread and as a result means
the processing will also be slower. Furthermore, it wouldn’t make sense to process all
expressions in a single kernel. This would lead to a lot of thread divergence, which essen-
tially means processing one expression after the other. The SIMT programming model
might help with parallelising at least some parts of the processing work. However, the
generated expressions can differ a lot from each other and restricting them to be similar
and therefore SIMT friendly, would likely reduce the overall quality of the symbolic
regression algorithm. Therefore, it does not make sense to perform the processing step
on the GPU.

The already mentioned concept of processing one expression per thread can also
be used on the CPU, which is better designed for this type of work. Concepts such as
caching processed expressions, or caching parts of the processed expressions can also
be employed on the CPU to speed up pre-processing. This would not be possible on
the GPU, because a GPU can not save state between two kernel dispatches. This is a
typical example of code that is better run on the CPU and shows how the CPU and
GPU need to work together and exploit their respective strengths to achieve the best
performance.

3. Concept and Design 26

Figure 3.4: This diagram depicts the coarse-grained workflow of the interpreter. It shows
how the parts interact with each other and with the system it will operate in.

3.2.2 Interpreter
The interpreter consists of two parts. The CPU side is the part of the program, that
interacts with both the GPU and the caller. An overview of the components and the
workflow of the interpreter is shown in Figure 3.4. Once the interpreter has received
the expressions, they are pre-processed. This ensures that the expressions are valid,
and that they are transformed into the intermediate representation needed to evaluate
them. The result of this pre-processing step is then sent to the GPU, which performs
the actual interpretation of the expressions. In addition to the expressions, the data for
the variables and parameters must also be sent to the GPU.

Once all the data is present on the GPU, the interpreter kernel can be dispatched.
As already described, the kernel will be dispatched for each expression to reduce thread
divergence. In fact, dispatching the same kernel multiple times with different expressions,
means, there will not occur any thread divergence which will be explained later.

After the GPU has finished evaluating all expressions with all variable sets, the
result is stored in a matrix on the GPU. The CPU then retrieves the results and returns
them to the caller in the format specified by the requirements.

Evaluating the expressions is relatively straight forward. Because the expressions
are in postfix notation, the actual interpreter just needs to iterate over all the tokens
and perform the appropriate tasks. If the interpreter encounters a binary operator, it

3. Concept and Design 27

simply needs to read the previous two values and perform the operation specified by
the operator. For unary operators, only the previous value needs to be read. As already
mentioned, expressions in postfix notation implicitly contain the operator precedence,
therefore no look-ahead or other strategies need to be used to ensure correct evaluation.
This also means that each token is visited exactly once and no unnecessary or overhead
work needs to be done. The Algorithm 3.1 shows how the interpreter works. Note that
this is a simplified version, that only works with additions, multiplications, constants
and variables.

Algorithm 3.1: Interpreting an equation in postfix notation
1: procedure Evaluate(expr : PostfixExpression)
2: stack← []
3: while HasTokenLeft(expr) do
4: token← GetNextToken(expr)
5: if token.Type = Constant then
6: Push(stack, token.Value)
7: else if token.Type = Variable then
8: Push(stack, GetVariable(token.Value))
9: else if token.Type = Operator then

10: if token.Value = Addition then
11: right← Pop(stack)
12: left← Pop(stack)
13: Push(stack, left + right)
14: else if token.Value = Multiplication then
15: right← Pop(stack)
16: left← Pop(stack)
17: Push(stack, left * right)
18: StoreResult(Pop(stack))

The handling of constants and variables is very simple. Constants only need to be
stored on the stack for later use. Variables also only need to be stored on the stack.
However, their value must first be loaded from the variable matrix according to the
token value of the variable. Since the entire variable matrix is sent to the GPU, the
index of the variable set is also needed to load the variable value. However, for the sake
of simplicity, it has been omitted from the algorithm.

When an operator token is encountered, the handling becomes more complex. The
value of the token indicates the type of operation to be applied. For binary operators,
the top two values on the stack need to be used as input to the operator. For unary
operators, only the top value of the stack needs to be used as an input. Once the result
has been computed, it must be stored at the top of the stack to be used as an input for
the next operation.

At the end of the algorithm, the stack contains one last entry. This entry is the value
computed by the expression with the designated variable set and parameters. In order
to send this value back to the CPU, it must be stored in the result matrix. The last
statement performs this action. It again has been simplified to omit the index of the
expression and variable set needed to store the result at the correct location.

3. Concept and Design 28

Figure 3.5: This diagram depicts the coarse-grained workflow of the transpiler. It shows
how the parts interact with each other and with the system it will operate in.

The Algorithm 3.1 in this case resembles the kernel. This kernel will be dispatched
for each expression that needs to be evaluated, to prevent thread divergence. Thread
divergence can only occur on data-dependent branches. In this case, the while loop
and every if and else-if statement contains a data-dependent branch. Depending on
the expression passed to the kernel, the while loop may run longer than for another
expression. Similarly, not all expressions have the same constants, operators or variables
in the same order, and would therefore cause each thread to take a different path.
However, one expression always has the same constants, operators and variables in the
same locations, meaning that all threads will take the same path. This also means that
although the interpreter contains many data-dependent branches, these branches only
depend on the expression itself. Because of this, all threads will follow the same path
and will therefore never diverge from one another as long as they are executing the same
expression.

3.2.3 Transpiler
Similar to the interpreter, the transpiler also consists of a part that runs on the CPU
and a part that runs on the GPU. Looking at the components and workflow of the
transpiler, as shown in Figure 3.5, it is almost identical to the interpreter. However, the
key difference between the two, is the additional code generation, or transpilation step.
Apart from that, the transpiler also needs the same pre-processing step and also the GPU

3. Concept and Design 29

to evaluate the expressions. However, the GPU evaluator generated by the transpiler
works very differently to the GPU evaluator for the interpreter. The difference between
these evaluators will be explained later.

Before the expressions can be transpiled into PTX code, they have to be pre-
processed. As already described, this step ensures the validity of the expressions and
transforms them into the intermediate representation described above. As with the in-
terpreter, this also simplifies the code generation step. By transforming the expressions
into postfix notation, the code generation follows a similar pattern to the interpretation
already described.

Algorithm 3.2 shows how the transpiler takes an expression, transpiles it and then
returns the finished code. It can be seen that the while loop is largely the same as
the while loop of the interpreter. The main difference is in the operator branches, be-
cause now code needs to be generated instead of the result of computing the expression.
Therefore, the branches themselves call their designated code generation function, such
as GetAddition. This function returns the PTX code responsible for the addition. How-
ever, this function must return more than just the code that performs the addition.
When executed, this addition also returns a value which will be needed as an input by
other operators. Therefore, not only the code fragment must be returned, but also the
reference to the result.

This reference can then be put on the stack for later use, just as the interpreter
stores the value for later use. The code fragment must also be added to the already
generated code so that it can be returned to the caller. As with the interpreter, there is
a final value on the stack when the loop has finished. Once the code has been executed,
this value is the reference to the result of the expression. This value then needs to be
stored in the result matrix, so that it can be retrieved by the CPU after all expressions
have been executed on the GPU. Therefore, a final code fragment must be generated to
handle the storage of this value in the result matrix. This fragment must then be added
to the code already generated, and the transpilation process is complete.

The code generated by the transpiler is the kernel for the transpiled expressions.
This means that a new kernel must be generated for each expression that needs to be
evaluated. This is in contrast to the interpreter, which has one kernel and dispatches
it once for each expression. However, generating one kernel per expression results in a
much simpler kernel. This allows the kernel to focus on evaluating the postfix expression
from left to right. There is no overhead work such as branching or managing a stack.
However, this overhead is now shifted to the transpilation step on the CPU which can
be seen in Algorithm 3.2. There is also a noticeable overhead in that a kernel has to
be generated for each expression. In cases like parameter optimisation, many of the
expressions will be transpiled multiple times as the transpiler is called multiple times
with the same expressions.

Both the transpiler and the interpreter have their respective advantages and disad-
vantages. While the interpreter puts less load on the CPU, the GPU has to perform
more work. Much of this work involves branching or managing a stack, and therefore
involves many instructions that are not used to evaluate the expression itself. However,
this overhead can be mitigated by the fact, that all this work is performed in parallel
rather than sequentially.

On the other hand, the transpiler performs more work on the CPU. The kernels

3. Concept and Design 30

Algorithm 3.2: Transpiling an equation in postfix notation
1: procedure Transpile(expr : PostfixExpression): String
2: stack← []
3: code← “”
4: while HasTokenLeft(expr) do
5: token← GetNextToken(expr)
6: if token.Type = Constant then
7: Push(stack, token.Value)
8: else if token.Type = Variable then
9: (codeFragment, referenceToValue) ← GetVariable(token.Value)

10: Push(stack, referenceToValue)
11: Append(code, codeFragment)
12: else if token.Type = Operator then
13: if token.Value = Addition then
14: right← Pop(stack)
15: left← Pop(stack)
16: (referenceToValue, codeFragment)← GetAddition(left, right)
17: Push(stack, referenceToValue)
18: Append(code, codeFragment)
19: else if token.Value = Multiplication then
20: right← Pop(stack)
21: left← Pop(stack)
22: (referenceToValue, codeFragment)← GetMultiplication(left, right)
23: Push(stack, referenceToValue)
24: Append(code, codeFragment)
25: codeFragment← GenerateResultStoring(Pop(stack))
26: Append(code, codeFragment)

return code

are much simpler, and most of the instructions are used to evaluate the expressions
themselves. Furthermore, as explained in Section 2.2.2, any program running on the
GPU, must be transpiled into PTX code before the driver can compile it into machine
code. Therefore, the kernel written for the interpreter, must also be transpiled into
PTX. This overhead is in addition to the branch instruction overhead. The self-written
transpiler removes this intermediate step by transpiling directly into PTX. In addition,
the generated code is tailored to evaluate expressions and does not need to generate
generic PTX code, which can reduce transpilation time.

Unlike the GPU, the CPU can manage state across multiple kernel dispatches. Con-
cepts such as caches can be employed by the transpiler to reduce the overhead on the
CPU. In cases such as parameter optimisation, where expressions remain the same across
multiple calls, the resulting PTX code can be cached. As a result, the same expression
doesn’t need to be transpiled multiple times which drastically reducing the transpilation
time. This is an important optimisation as this can improve the overall performance of
the transpiler.

Chapter 4

Implementation

This chapter focuses on the implementation phase of the project, building upon the
concepts and designs previously discussed. It begins with an overview of the technologies
employed for both the CPU and GPU parts of the application. This is followed by
a description of the pre-processing or frontend phase. The chapter concludes with a
detailed overview of the core components, the interpreter and the transpiler.

4.1 Technologies
This section describes the technologies used for both the CPU side of the prototypes
and the GPU side. The rationale behind these choices, including consideration of their
performance implications, is presented. In addition, the hardware limitations imposed
by the choice of GPU technology are outlined.

4.1.1 CPU side
Both prototypes were implemented using the Julia programming language. It was cho-
sen mainly, because the current symbolic regression algorithm is also implemented in
Julia. Being a high-level programming language, with modern features such as a garbage
collector, support for meta-programming and dynamic typing, it also offers great con-
venience to the developer.

More interestingly however, is the high performance that can be achieved with this
language. It is possible to achieve high performance despite the supported modern fea-
tures, which are often deemed to be harmful to performance. Bezanson et al. (2017)
have shown how Julia can provide C-like performance while supporting the developer
with modern quality of life features. The ability of Julia to be used in high performance
computing scenarios and to be competitive with C has been demonstrated by W.-C.
Lin and McIntosh-Smith (2021). This shows how Julia is a good and valid choice for
scenarios where developer comfort and C-like performance are needed.

4.1.2 GPU side
In addition to a programming language for the CPU, a method for programming the
GPU is also required. For this purpose, the CUDA API was chosen. While CUDA offers

31

4. Implementation 32

robust capabilities, it is important to note that it is exclusively compatible with Nvidia
GPUs. An alternative would have been OpenCL, which provides broader compatibility
by supporting GPUs from Nvidia, AMD and Intel. However, considering Nvidia’s signif-
icant market share and the widespread adoption of CUDA in the industry, the decision
was made to use CUDA.

A typical CUDA program is primarily written C++ and Nvidia also provides their
CUDA compiler nvcc1 for C and C++ and their official CUDA programming guide
(Nvidia, 2025b) also uses C++ for code examples. It is also possible to call C++ code
from within Julia. This would allow for writing the kernel and interacting with the GPU
in C++, leveraging the knowledge built up over several years.

CUDA and Julia

Instead of writing the kernel in C++ and calling it from Julia, a much simpler and
effective alternative can be used. The Julia package CUDA.jl2 enables a developer to
write a kernel in Julia similar to how a kernel is written in C++ with CUDA. One
drawback of using CUDA.jl however, is the fact that it is much newer compared to
CUDA and therefore does not have years of testing and bug fixing in its history, which
might be a concern for some applications. Apart from writing kernels with CUDA.jl, it
also offers a method for interacting with the driver, to compile PTX code into machine
code. This is a must-have feature as otherwise, it wouldn’t have been possible to fully
develop the transpiler in Julia.

Additionally, the JuliaGPU initiative3 offers a collection of additional packages to
enable GPU development for AMD, Intel and Apple and not just for Nvidia. However,
CUDA.jl is also the most mature of the available implementations, which is also a reason
why CUDA has been chosen instead of for example OpenCL.

Again, the question arises if the performance of CUDA.jl is sufficient to be used
as an alternative to C++ and CUDA. Performance studies by Besard et al. (2019a),
W.-C. Lin and McIntosh-Smith (2021) and Faingnaert et al. (2022) have demonstrated,
that CUDA.jl provides sufficient performance. They found that in some cases CUDA.jl
was able to perform better than the same algorithm implemented in C and C++. This
provides the confidence, that Julia alongside CUDA.jl is a good choice for leveraging
the performance of GPUs to speed-up expression evaluation.

4.2 Pre-Processing
The pre-processing or frontend step is very important. As already explained in Chapter
3, it is responsible for ensuring that the given expressions are valid and that they
are transformed into an intermediate representation. This section aims to explain how
the intermediate representation is implemented, as well as how it is generated from a
mathematical expression.

1https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
2https://cuda.juliagpu.org/
3https://juliagpu.org/

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://cuda.juliagpu.org/
https://juliagpu.org/

4. Implementation 33

4.2.1 Intermediate Representation
The intermediate representation is mainly designed to be lightweight and easily trans-
ferrable to the GPU. Since the interpreter runs on the GPU, this was a very important
consideration. Because the transpilation process is done on the CPU, and is therefore
very flexible in terms of the intermediate representation, the focus was mainly on being
efficient for the interpreter.

The intermediate representation cannot take any form. While it has already been
defined that expressions are converted to postfix notation, there are several ways to
store the data. The first logical choice is to create an array where each entry represents
a token. On the CPU it would be possible to define each entry as a pointer to the token
object. Each of these objects could be of a different type, for example one object that
holds a constant value while another object holds an operator. In addition, each of these
objects could contain its own logic about what to do when it is encountered during the
evaluation process. However, on the GPU, this is not possible, as an array entry must
hold a value and not a pointer to another memory location. Furthermore, even if it were
possible, it would be a bad idea. As explained in Section 2.2.1, when loading data from
global memory, larger chunks are retrieved at once. If the data is scattered across the
GPU’s global memory, a lot of unwanted data will be transferred. This can be seen in
Figure 4.1, where if the data is stored sequentially, far fewer data operations and far
less data in general needs to be transferred.

Because of this and because the GPU does not allow pointers, another solution
is required. Instead of storing pointers to objects of different types in an array, it is
possible to store one object with meta information. The object thus contains the type
of the stored value, and the value itself, as described in Section 3.2.1. The four types
that need to be stored in this object, differ significantly in the value they represent.

Variables and parameters are very simple to store. Because they represent indices
to the variable matrix or the parameter vector, this (integer) index can be stored as is
in the value property of the object. The type can then be used to determine whether it
is an index to a variable or a parameter access.

Constants are also very simple, as they represent a single 32-bit floating point value.
However, because of the variables and parameters, the value property is already defined
as an integer and not as a floating point number. Unlike languages like Python, where
every number is a floating point number, in Julia they are different and therefore cannot
be stored in the same property. Creating a second property for constants only is not
feasible, as this would introduce 4 bytes per object that need to be sent to the GPU
which most of the time does not contain a defined value.

To avoid sending unnecessary bytes, a mechanism provided by Julia called reinterpret
can be used. This allows the bits of a variable of one type, to be treated as the bits of
another type. The bits used to represent a floating point number are then interpreted as
an integer and can be stored in the same property. On the GPU, the same concept can be
applied to reinterpret the integer value as a floating point value for further calculations.
This is also the reason why the original type of the value needs to be stored alongside
the value in order for the stored to be interpreted correctly and the expressions to be
evaluated correctly.

Operators are very different from variables, parameters and constants. Because they

4. Implementation 34

Figure 4.1: Loading data from global memory on the GPU always loads 32, 64 or 128
bytes (see Section 2.2.1). If pointers were supported and data would be scattered around
global memory, many more data load operations would be required. Additionally, much
more unwanted data would be loaded.

represent an operation rather than a value, a different way of storing them is required.
An operator can be mapped to a number to identify the operation. For example, if the
addition operator is mapped to the integer 1, then when the evaluator encounters an
object of type operator and a value of 1, it will know which operation to perform. This
can be done for all operators which means it is possible to store them in the same object
with the same property. and only the type needs to be specified. The mapping of an
operator to a value is often called an operation code, or opcode, and each operator is
represented as one opcode.

With this, the intermediate representation is defined. Figure 4.2 shows how a simple
expression would look after the pre-processing step. Note that the vluae 2.5 has been
reinterpreted as an integer, resulting in the seemingly random value.

4.2.2 Processing
Now that the intermediate representation has been defined, the processing step can be
implemented. This section describes the structure of the expressions and how they are
processed. It also explains the process of parsing the expressions to ensure their validity
and converting them into the intermediate representation.

4. Implementation 35

Figure 4.2: The expression 𝑥1 + 2.5 after it has been converted to the intermediate
representation. Note that the constant value 2.5 stores a seemingly random value due to
it being reinterpreted as an integer.

Expressions

With the pre-processing step, the first modern feature of Julia has been used. As already
mentioned, Julia provides extensive support for meta-programming, which is important
for this step. Julia represents its own code as a data structure, which allows a developer
to manipulate the code at runtime. The code is stored in the so-called Expr object
as an Abstract Syntax Tree (AST), which is the most minimal tree representation of
a given expression. As a result, mathematical expressions can also be represented as
such an Expr object instead of a simple string. Which is a major benefit, because these
expressions can then be easily manipulated by the symbolic regression algorithm. This
is the main reason why the pre-processing step requires the expressions to be provided
as an Expr object instead of a string.

Another major benefit of the expressions being stored in the Expr object and there-
fore as an AST, is the included operator precedence. Because it is a tree where the leaves
are the constants, variables or parameters (also called terminal symbols) and the nodes
are the operators, the correct result will be calculated when evaluating the tree from
bottom to top. As can be seen in Figure 4.3, the expression 1 + 𝑥1 log(𝑝1), when parsed
as an AST, contains the correct operator precedence. First the bottom most subtree
log(𝑝1) must be evaluated before the multiplication, and after that, the addition can be
evaluated.

It should be noted however, that Julia stores the tree as a list of arrays to allow a
node to have as many children as necessary. For example the expression 1 + 2 + · · ·+ 𝑛
contains only additions, which is a commutative operation, meaning that the order of
operations is irrelevant. The AST for this expression would contain the operator at the
first position in the array and the values at the following positions. This ensures that
the AST is as minimal as possible.

Parsing

To convert the AST of an expression into the intermediate representation, a top-down
traversal of the tree is required. The steps for this are as follows:

1. Extract the operator and convert it to its opcode for later use.
2. Convert all constants, variables and parameters and operators to the object (ex-

pression element) described in Section 4.2.1.
3. Append the expression elements to the postfix expression.

4. Implementation 36

Figure 4.3: The AST for the expression 1 + 𝑥1 log(𝑝1) as generated by Julia. Some
additional details Julia includes in its AST have been omitted as they are not relevant.

4. If the operator is a binary operator and there are more than two expression el-
ements, append the operator after the first two elements and then after each
element.

5. If a subtree exists, apply all previous steps and append it to the existing postfix
expression.

6. Append the operator
7. Return the generated postfix expression/intermediate representation.
The validation of the expression is performed throughout the parsing process. Vali-

dating that only correct operators are used is performed in step 1. To be able to convert
the operator to its corresponding opcode, it must be validated that an opcode exists
for it, and therefore whether it is valid or not. Similarly, converting the tokens into an
expression element object ensures that only valid variables and parameters are present
in the expression. This is handled in step 2.

As explained above, a node of a binary operator can have 𝑛 children. In these cases,
additional handling is required to ensure correct conversion. This handling is sum-
marised in step 4. Essentially, the operator must be added after the first two elements,
and for each subsequent element, the operator must also be added. The expression
1 + 2 + 3 + 4 is converted to the AST + 1 2 3 4 and without step 4 the postfix expression
would be 1 2 3 4 +. If the operator is added after the first two elements and then after
each subsequent element, the correct postfix expression 1 2 + 3 + 4 + will be generated.

Each subtree of the AST is its own separate AST, which can be converted to postfix
notation in the same way the whole AST can be converted. This means that the algo-
rithm only needs to be able to handle leave nodes, and when it encounters a subtree,

4. Implementation 37

it recursively calls itself to parse the remaining AST. Step 5 indicates this recursive
behaviour.

While the same expression usually occurs only once, sub-expressions can occur mul-
tiple times. In the example in Figure 4.3, the whole expression 1 + 𝑥1 log(𝑝1) is unlikely
to be generated more than once by the symbolic regression algorithm. However, the sub-
expression log(𝑝1) is much more likely to be generated multiple times. This means that
the generation of the intermediate representation for this subtree only needs to be done
once and can be reused later. Therefore, a cache can be used to store the intermediate
representation for this sub-expression and access it again later to eliminate the parsing
overhead.

Caching can be applied to both individual sub-expressions as well as the entire ex-
pression. While it is unlikely for the whole expression to recur frequently, either as a
whole or as part of a larger expression, implementing a cache will not degrade perfor-
mance and will, in fact, enhance it if repetitions do occur. In the context of parameter
optimisation, where the evaluators are employed, expressions will recur, making full-
expression caching advantageous. The primary drawback of caching is the increased use
of RAM. However, given that RAM is plentiful in modern systems, this should not pose
a significant issue.

4.3 Interpreter
The implementation is divided into two main components, the CPU-based control logic
and the GPU-based interpreter as outlined in the Concept and Design chapter. This
section aims to describe the technical details of these components. First the CPU-
based control logic will be discussed. This component handles the communication with
the GPU and is the entry point which is called by the symbolic regression algorithm.
Following this, the GPU-based interpreter will be explored, highlighting the specifics of
developing an interpreter on the GPU.

An overview of how these components interact with each other is outlined in Figure
4.4. The parts of this figure are explained in detail in the following sections.

4.3.1 CPU Side
The interpreter is given all the expressions it needs to interpret as an input. Addition-
ally, it needs the variable matrix as well as the parameters for each expression. All
expressions are passed to the interpreter as an array of Expr objects, as they are needed
for the pre-processing step or the frontend. The first loop as shown in Figure 4.4, is
responsible for sending the expressions to the frontend to be converted into the inter-
mediate representation. After this step, the expressions are in the correct format to be
sent to the GPU and the interpretation process can continue.

Data Transfer

Before the GPU can start with the interpretation, the data needs to be sent to the
GPU. Because the variables are already in matrix form, transferring the data is fairly
straightforward. Memory must be allocated in the global memory of the GPU and then

4. Implementation 38

Figure 4.4: The sequence diagram of the interpreter.

be copied from RAM into the allocated memory. Allocating memory and transferring
the data to the GPU is handled implicitly by the CuArray type provided by CUDA.jl.

To optimise the interpreter for parameter optimisation workloads, this step is ac-
tually performed before the interpreter is called. Although, the diagram includes this
transmission for completeness, it is important to note that the variables never change,
as they represent the observed inputs of the system that being modelled by the sym-
bolic regression algorithm. Therefore, re-transmitting the variables for each step of the
parameter optimisation process would be inefficient. By transmitting the variables once
and reusing them throughout the parameter optimisation, significant time can be saved.

Furthermore, transferring the data to the GPU before the symbolic regression algo-
rithm begins, could save even more time. However, this approach would require modi-
fication to the symbolic regression algorithm. Therefore, the decision has been made to
neglect this optimisation. Nonetheless, it is still possible to modify the implementation
at a later stage with minimal effort, if needed.

Once the variables are transmitted, the parameters also must be transferred to the
GPU. Unlike the variables, the parameters are stored as a vector of vectors. In order
to transmit the parameters efficiently, they also need to be put in a matrix form. The
matrix needs to be of the form 𝑘×𝑁 , where 𝑘 is equal to the length of the longest inner

4. Implementation 39

1 function convert_to_matrix(vecs::Vector{Vector{T}}, invalidElement::T)::Matrix{T}
where T

2 maxLength = get_max_inner_length(vecs)
3
4 # Pad the shorter vectors with the invalidElement to make all equal length
5 paddedVecs = [vcat(vec, fill(invalidElement, maxLength - length(vec))) for vec in

vecs]
6 vecMat = hcat(paddedVecs...) # transform vector of vectors into column-major

matrix
7
8 return vecMat
9 end

10
11 function get_max_inner_length(vecs::Vector{Vector{T}})::Int where T
12 return maximum(length.(vecs))
13 end
14

Program 4.1: A Julia program fragment depicting the conversion from a vector of vectors
into a matrix of the form 𝑘 ×𝑁 .

vector and 𝑁 is equal to the length of the outer vector. This ensures that all values can
be stored in the matrix. It also means that if the inner vectors are of different lengths,
some extra unnecessary values will be transmitted, but the overall benefit of treating
them as a matrix outweighs this drawback. The Program 4.1 shows how this conversion
can be implemented. Note that it is required to provide an invalid element. This ensures
defined behaviour and helps with finding errors in the code. After the parameters have
been brought into matrix form, they can be transferred to the GPU the same way the
variables are transferred.

Similar to the parameters, the expressions are also stored as a vector of vectors.
The outer vector contains each expression, while the inner vectors hold the expressions
in their intermediate representation. Therefore, this vector of vectors also needs to be
brought into matrix form the same way the parameters are brought into matrix form.
To simplify development, the special opcode stop has been introduced, which is used
for the invalidElement in Program 4.1. As seen in Section 4.3.2, this element is used to
determine if the end of an expression has been reached during the interpretation process.
This removes the need for additional data to be sent which stores the length of each
expression to determine if the entire expression has been interpreted or not. Therefore,
a lot of overhead can be reduced.

Once the conversion into matrix form has been performed, the expressions are trans-
ferred to the GPU. Just like with the variables, the expressions remain the same over
the course of the parameter optimisation part. Therefore, they are transferred to the
GPU before the interpreter is called, to reduce the amount of unnecessary data transfer.

In addition to the already described data that needs to be sent, two more steps are
required that have not been included in the Sequence Diagram 4.4. The first one is the
allocation of global memory for the result matrix. Without this, the kernel would not
know where to store the interpretation results and the CPU would not know from which
memory location to read the results from. Therefore, enough global memory needs to

4. Implementation 40

Figure 4.5: The expressions, variables and parameters as they are stored in the GPUs
global memory. Note that while on the CPU they are stored as matrices, on the GPU,
they are only three arrays of data. The thick lines represent, where a new column and
therefore a new set of data begins.

be allocated beforehand so that the results can be stored and retrieved after all kernel
executions have finished.

Only raw data can be sent to the GPU, which means that information about the
data is missing. The matrices are represented as flat arrays, which means they have lost
their column and row information. This information must be sent separately to let the
kernel know the dimensions of the expressions, variables and parameters. Otherwise,
the kernel does not know at which memory location the second variable set is stored,
as it does not know how large a single set is for example. Figure 4.5 shows how the
data is stored without any information about the rows or columns of the matrices. The
thick lines help to identify where a new column, and therefore a new set of data begins.
However, the GPU has no knowledge of this and therefore the additional information
must be transferred to ensure that the data is accessed correctly.

Kernel Dispatch

Once all the data is present on the GPU, the CPU can dispatch the kernel for each
expression. This dispatch requires parameters that specify the number of threads and
their organisation into thread blocks. In total, one thread is required for each variable
set and therefore the grouping into thread blocks is the primary variable. Taking into
account the constraints explained in Section 2.2.1, this grouping needs to be tuned for
optimal performance. The specific values alongside the methodology for determining
these values will be explained in Chapter 5.

In addition, the dispatch parameters also include the pointers to the location of
the data allocated and transferred above, as well as the index of the expression to be
interpreted. Since all expressions and parameters are sent to the GPU at once, this
index ensures that the kernel knows where in memory to find the expression it needs
to interpret and which parameter set it needs to use. After the kernel has finished, the
result matrix needs to be read from the GPU and passed back to the symbolic regression
algorithm.

Crucially, dispatching a kernel is an asynchronous operation, which means that the

4. Implementation 41

CPU does not wait for the kernel to finish before continuing. This allows the CPU to
dispatch all kernels at once, rather than one at a time. As explained in Section 3.2,
a GPU can have multiple resident grids, meaning that the dispatched kernels can run
concurrently, drastically reducing evaluation times. Only once the result matrix is read
from the GPU does the CPU have to wait for all kernels to finish execution.

4.3.2 GPU Side
With the GPU’s global memory now containing all the necessary data and the kernel
being dispatched, the interpretation process can begin. Before interpreting an expres-
sion, the global thread ID must be calculated. This step is crucial because each variable
set is assigned to a unique thread. Therefore, the global thread ID determines which
variable set should be used for the current interpretation instance.

Moreover, the global thread ID ensures that excess threads do not perform any work.
As otherwise these threads would try to access a variable set that does not exist and
therefore would lead to an illegal memory access. This is necessary because the number
of required threads often does not align perfectly with the number of threads per block
multiplied by the number of blocks. If for example 1031 threads are required, then at
least two thread blocks are needed, as one thread block can hold at most 1024 threads.
Because 1031 is a prime number, it can not be divided by any practical number of
thread blocks. If two thread blocks are allocated, each holding 1024 threads, a total
of 2048 threads is started. Therefore, the excess 2048 − 1031 = 1017 threads must be
prevented from executing. By using the global thread ID and the number of available
variable sets, these excess threads can be easily identified and terminated early in the
kernel execution.

Afterwards the stack for the interpretation can be created. It is possible to dynam-
ically allocate memory on the GPU, which enables a similar programming model as on
the CPU. Winter et al. (2021) have even compared many dynamic memory managers
and found, that the performance impact of them is rather small. However, if it is easily
possible to use static allocations, it still offers better performance. In the case of this
thesis, it is easily possible which is the reason why the stack has been chosen to have a
static size. Because it is known that expressions do not exceed 50 tokens, including the
operators, the stack size has been set to 25, which should be more than enough to hold
the values and partial results, even in the worst case.

Main Loop

Once everything is initialised, the main interpreter loop starts interpreting the expres-
sion. Because of the intermediate representation, the loop simply iterates through the
expression from left to right. On each iteration the type of the current token is checked,
to decide which operation to perform.

If the current token type matches the stop opcode, the interpreter knows that it
is finished. This simplicity is the reason why this opcode was introduced, as explained
above.

More interestingly is the case, where the current token corresponds to an index to
either the variable matrix, or the parameter matrix. In this case, the token’s value is
important. To access one of these matrices, the correct starting index of the set must

4. Implementation 42

first be calculated. As previously explained, information about the dimensions of the
data is lost during transfer. At this stage, the kernel only knows the index of the first
element of either matrix, which set to use for this evaluation, and the index of the value
within the current set. However, the boundaries of these sets are unknown. Therefore,
the additionally transferred data about the dimensions is used in this step to calculate
the index of the first element in each set. With this calculated index and the index
stored in the token, the correct value can be loaded. After the value has been loaded, it
is pushed to the top of the stack for later use.

Constants work very similarly in that the token value is read and added to the top
of the stack. However, the constants have been reinterpreted from floating-point values
to integers for easy transfer to the GPU. This operation must be reversed before adding
the value to the stack as otherwise the wrong values would be used for evaluation.

Evaluating the expression is happening if the current token is an operator. The
token’s value, which serves as the opcode, determines the operation that needs to be
performed. If the opcode represents a unary operator, only the top value of the stack
needs to be popped for the operation. The operation is then executed on this value and
the result is pushed back to the stack. On the other hand, if the opcode represents a
binary operator, the top two values of the stack are popped. These are then used for
the operation, and the result is subsequently pushed back onto the stack.

Support for ternary operators could also be easily added. An example of a ternary
operator that would help improve performance would be the GPU supported Fused
Multiply-Add (FMA) operator. While this operator does not exist in Julia, the frontend
can generate it when it encounters a sub-expression of the form 𝑥 * 𝑦 + 𝑧. Since this
expression performs the multiplication and addition in a single clock cycle instead of
two, it would be a feasible optimisation. However, detecting such sub-expressions is
complicated, which why it is not supported in the current implementation.

Once the interpreter loop has finished, the result of the evaluation must be stored in
the result matrix. By using the index of the current expression, as well as the index of
the current variable set (the global thread ID) it is possible to calculate the index where
the result must be stored. The last value on the stack is the result, which is stored in
the result matrix at the calculated location.

4.4 Transpiler
Unlike the interpreter, the transpiler primarily operates on the CPU, with only a minor
GPU-based component. This is because the transpiler must generate entire PTX ker-
nels from Julia expressions, rather than simply executing a pre-written kernel like the
interpreter. Similar to the interpreter, the CPU side of the transpiler manages communi-
cation with both the GPU and the symbolic regression algorithm. This section provides
a detailed overview of the transpiler’s functionality.

An overview of how the transpiler interacts with the frontend and GPU is outlined
in Figure 4.6. The parts of this figure are explained in detail in the following sections.

4. Implementation 43

Figure 4.6: The sequence diagram of the transpiler.

4.4.1 CPU Side
After the transpiler has received the expressions to be transpiled, it first sends them to
the frontend for processing. Once they have been processed, the expressions are sent to
the transpiler backend which is explained in more detail Section 4.4.2. The backend is
responsible for generating the kernels. The output of the backend are the kernels written
as PTX code for all expressions.

Data Transfer

Data is sent to the GPU in the same way as it is sent by the interpreter. The variables
are sent as they are, while the parameters are again brought into matrix form. Memory
must also be allocated for the result matrix. Unlike the interpreter however, this is the
only data that needs to be sent to the GPU for the transpiler.

Because each expression has its own kernel, there is no need to transfer the expres-
sions themselves. Moreover, there is also no need to send information about the layout
of the variables and parameters to the GPU. The reason for this is explained in the
transpiler backend section below.

4. Implementation 44

1 # Dispatching the interpreter kernel
2 for i in eachindex(exprs)
3 numThreads = ...
4 numBlocks = ...
5
6 @cuda threads=numThreads blocks=numBlocks fastmath=true interpret(cudaExprs,

cudaVars, cudaParams, cudaResults, cudaAdditional)
7 end
8
9 # Dispatching the transpiled kernels

10 for kernelPTX in kernelsPTX
11 # Create linker object, add the code and compile it
12 linker = CuLink()
13 add_data!(linker, "KernelName", kernelPTX)
14 image = complete(linker)
15
16 # Get callable function from compiled result
17 mod = CuModule(image)
18 kernel = CuFunction(mod, "KernelName")
19
20 numThreads = ...
21 numBlocks = ...
22
23 # Dispatching the kernel
24 cudacall(kernel, (CuPtr{Float32},CuPtr{Float32},CuPtr{Float32}), cudaVars,

cudaParams, cudaResults; threads=numThreads, blocks=numBlocks)
25 end

Program 4.2: A Julia program fragment showing how the transpiled kernels need to be
dispatched as compared to the interpreter kernel

Kernel Dispatch

Once all the data is present on the GPU, the transpiled kernels can be dispatched.
Dispatching the transpiled kernels is more involved than dispatching the interpreter
kernel. Program 4.2 shows the difference between dispatching the interpreter kernel
and the transpiled kernels. An important note, is that the transpiled kernels must be
manually compiled into machine code. To achieve this, CUDA.jl provides functionality
to instruct the drivers to compile the PTX code. The same process of creating PTX
code and compiling it must also be done for the interpreter kernel, however, this is done
by CUDA.jl automatically when calling the @cuda macro in line 6.

After all kernels have been dispatched, the CPU waits for the kernels to complete
their execution. When the kernels have finished, the result matrix is read from global
memory into system memory. The results can then be returned to the symbolic regres-
sion algorithm.

4.4.2 Transpiler Backend
The transpiler backend is responsible for creating a kernel from an expression in its
intermediate representation. Transpiling an expression is divided into several parts,

4. Implementation 45

these parts are as follows:
• Register management
• Generating the header and kernel entry point
• Ensuring that only the requested amount of threads is performing work
• Generating the Code for evaluating the expression and storing the result
PTX assumes a register machine, which means that a developer has to work with a

limited number of registers. This also means that the transpiler has to define a strategy
for managing these registers. The second and third parts are rather simple and can be
considered as overhead code. Finally, the last part is the main part of the generated
kernel. It contains the code to load variables and parameters, evaluate the expression
and store the result in the result matrix. All parts are explained in the following sections.

Register Management

Register management is a crucial part of the transpiler as it is important to balance
register usage with occupancy and performance. Aho et al. (2006) and Cooper and Torc-
zon (2022) describe techniques for efficient register management, especially for machines
with few registers and register usage by convention on the CPU. On the GPU however,
there are many more registers available, all of which can be used as needed without
restrictions.

To allow for maximum occupancy and avoid spilling registers into local memory, the
transpiler tries to reuse as many registers as possible. Furthermore, allocating and using
a register in PTX is very similar to using variables in code, as they represent virtual
registers. Therefore, much of the complexity of managing registers is handled by the
PTX compiler of the driver.

Because much of the complexity of managing registers is hidden by the compiler, or
does not apply in this scenario, it is implemented very simple. If a register is needed at
any point in the transpilation process, it can be requested by the register manager. A
register must be given a name and the manager uses this name to determine the type of
this register. For example, if the name of the register is f, it is assumed to be an FP32
register. Several naming conventions exist to ensure that the register is of the correct
data type. The manager then returns the identifying name of the register, which is used
to access it. The identifying name, is the name given as an input and a zero-based
number that is incremented by one for each successive call.

PTX requires that the registers are defined before they are used. Therefore, after
the transpiler has finished generating the code, the registers must be defined at the top
of the kernel. As the manager has kept track of the registers used, it can generate the
code to allocate and define the registers. If the kernel only uses five FP32 registers, the
manager would generate the code .reg .f32 %f<5>;. This will allocate and define the
registers %f0 through %f4.

Header and Entry Point

Each PTX program must begin with certain directives in order to compile and use that
program correctly. The first directive must be the .version directive. It indicates which
PTX version the code was written for, to ensure that it is compiled with the correct

4. Implementation 46

tools in the correct version. Following the .version directive is the .target directive,
which specifies the target hardware architecture.

Once these directives have been added to the generated code, the entry point to the
kernel can be generated. It contains the name of the kernel, as well as all parameters
that are passed to it, such as the pointers to the variable, parameter and result matrix.
The kernel name is important as it is required by the CPU to dispatch it.

When the entry point is generated, the PTX code for loading the parameters into the
kernel is also generated. This removes the need to iterate over the kernel parameters a
second time. Loading the parameters into the kernel is necessary because it is not possi-
ble to address these values directly. Nvidia (2025d) states that addresses in the parame-
ter state space can only be accessed using the ld.param instruction. Furthermore, since
all three matrices are stored in global memory, the parameter address must be converted
from parameter state space to global state space using the cvta.to.global.datatype
instruction.

Guard Clause

As explained in Section 4.3.2, the guard clause ensures that any excess threads do not
participate in the evaluation. The following code shows what this guard clause looks
like when the kernel is written with Julia and CUDA.jl:

1 function my_kernel(nrOfVarSets::Int32)
2 threadId = (blockIdx().x - 1) * blockDim().x + threadIdx().x
3 if threadId > nrOfVarSets
4 return
5 end
6 # remaining kernel
7 end

This can be translated into the following PTX code fragment:
1 mov.u32 %r3, %ntid.x; // r3 = blockIdx().x - 1
2 mov.u32 %r4, %ctaid.x; // r4 = blockDim().x
3 mov.u32 %r5, %tid.x; // r5 = threadIdx().x
4
5 mad.lo.s32 %r1, %r3, %r4, %r5; //r1 = r3 * r4 + r5
6 setp.ge.s32 %p1, %r1, %r2; // p1 = r1 >= r2 (r2 = nrOfVarSets)
7 @%p1 bra End;
8
9 // remaining Kernel

10
11 End:
12 ret;

It needs to be noted, that the register %r2 is not needed. Since the transpiler already
knows the number of variable sets, it would be wasteful to transmit this information
to the kernel. Instead, the transpiler inserts the number directly as a constant to save
resources.

Main Loop

The main loop of the transpiler, which generates the kernel for evaluating a single
expression, is analogous to the interpreter’s main loop. Since the transpiler uses the

4. Implementation 47

same intermediate representation as the interpreter, both loops behave similarly. The
transpiler loop also uses a stack to store the values and intermediate results. However,
the transpiler does not require the special opcode stop which was necessary in the
interpreter to handle expressions padded to fit into a matrix. The transpiler only needs
to process a single expression, which is stored in an unpadded vector of known length.
This means that all tokens within the vector are valid and therefore do not require this
opcode.

When the loop encounters a token that represents an index to either the variable
or the parameter matrix, the transpiler needs to generate code to load these values. In
the general case, this works in exactly the same way as the interpreter, calculating the
index and accessing the matrices at that location.

However, the first time a variable or parameter is accessed, it must be loaded from
global memory. Although registers already exist that hold a pointer to the address of
the matrices in global memory, the data is still not accessible. To make it accessible,
the index to the value must first be calculated in the same way as it is calculated in
the interpreter. Afterwards the value must be loaded into a register with the instruction
ld.global.f32 %reg1, [%reg2]. Using the first register of the instruction, the data
can be accessed. For example, if the variable 𝑥1 is accessed several times, all subsequent
calls only need to reference this register and do not need to load the data from global
memory again.

In the case where the current token represents an operation, the code for this oper-
ation needs to be generated. Many operators have direct equivalents on the GPU. For
example addition has the add.f32 %reg1, %reg2, %reg3; instruction. The instruc-
tions for division and square root operations have equivalent instruction, but these only
support approximate calculations. Although the accuracy can be controlled with differ-
ent options, the fastest option .approx has been selected. While a slightly slower but
more accurate option .full exists, it is not fully IEEE 754 compliant and has therefore
not been used.

However, not all supported operators have a single instruction GPU equivalent.
For example, the 𝑥𝑦 operation does not have an equivalent and must be generated
differently. Compiling a kernel containing this operation using the Nvidia compiler and
the - -use_fast_math compiler flag will generate the following code:

lg2.approx.f32 %reg1, %reg2;
mul.f32 %reg4, %reg3, %reg1;
ex2.approx.f32 %reg5, %reg4;

While this compiler flag trades accuracy for performance, the more accurate version of
this operation contains about 100 instructions instead of the three above. Therefore,
the more performant version was chosen to be generated by the transpiler. Similarly,
the operations log(𝑥) and 𝑒𝑥 have no equivalent instruction and are therefore generated
using the same principle.

The final register of the generated code stores the result of the operation once it has
been executed. As with the interpreter, this result is either the final value or an input
to another operation. Therefore, this register must be stored on the stack for later use.

Once the main loop has finished, the last element on the stack holds the register
with the result of the evaluation. The value of this register must be stored in the result
matrix. As the result matrix is stored in global memory, the code for storing the data

4. Implementation 48

is similar to the code responsible for loading the data from global memory. First, the
location where the result is to be stored must be calculated. Storing the result at this
location is performed with the instruction st.global.f32 [%reg1], %reg2;.

4.4.3 GPU Side
On the GPU, the transpiled kernels are executed. Given that these kernels are relatively
simple, containing minimal branching and overhead, the GPU does not need to perform
a lot of operations. As illustrated in Program 4.3, the kernel for the expression 𝑥1 +𝑝1 is
quite straightforward. It involves only two load operations, the addition and the storing
of the result in the result matrix. Essentially, the kernel mirrors the expression directly,
with the already explained added overhead.

Note that Program 4.3 has been slightly simplified to omit the mandatory direc-
tives and the register allocation. From line five to line ten, the addresses stored in the
parameters are converted from parameter state space into global state space so that
they reference the correct portion of the GPU’s memory. It needs to be noted, that this
kernel uses 64-bit addresses, which is the reason why some 64-bit instructions are used
throughout the kernel. However, the evaluation of the expression itself is performed
entirely using the faster 32-bit instructions.

Lines 12 through 17 are responsible for calculating the global thread ID and ensuring
that excessive threads are terminated early. Note that in line 16, if the global thread ID
stored in register %r3 is greater than one, it must terminate early. This is because only
one variable set needs to be evaluated in this example.

The PTX code from line 22 to line 28 is the actual evaluation of the expression, with
line 28 performing the calculation 𝑥1 +𝑝1. All other lines are responsible for loading the
values from global memory. The instructions in lines 22, 23, 25 and 26 are responsible
for calculating the offset in bytes to the memory location where the value is stored with
respect to the location of the first element.

The constants 4 and 0 are introduced for performance reasons. The number 4 is the
size of a variable set in bytes. Since one variable set in this case stores only a single FP32
value, each variable set has a size of four bytes. Similarly, the number 0 represents the
index of the value within the variable set. More precisely, this is the offset in bytes from
the index to the variable set, which is zero for the first element, four for the second, and
so on. These two constants are calculated during the transpilation process to minimise
the amount of data to be transferred to the GPU.

Storing the result in the result matrix is performed from line 31 to 33. The location
where the value is to be stored is calculated in lines 31 and 32. Line 31 calculates the
index inside the result matrix according to the current variable set stored in register
%rd3. The constant 0 is the product of the index of the expression being evaluated and
the number of variable sets, and represents the column of the result matrix. Converting
this index into bytes and adding it as an offset to the first element of the result matrix
gives the correct memory location to store the result at.

This kernel consists mostly of overhead code, as only lines 22 through 33 contribute
to calculating the result of the expression with the designated variable and parameter
set. However, for larger expressions, the percentage of overhead code shrinks drastically.

4. Implementation 49

1 .visible .entry Evaluator(
2 .param .u64 param_1, .param .u64 param_2, .param .u64 param_3)
3 {
4 // Make parameters stored in global memory accessible
5 ld.param.u64 %rd0, [param_1];
6 cvta.to.global.u64 %parameter0, %rd0;
7 ld.param.u64 %rd1, [param_2];
8 cvta.to.global.u64 %parameter1, %rd1;
9 ld.param.u64 %rd2, [param_3];

10 cvta.to.global.u64 %parameter2, %rd2;
11
12 mov.u32 %r0, %ntid.x;
13 mov.u32 %r1, %ctaid.x;
14 mov.u32 %r2, %tid.x;
15 mad.lo.s32 %r3, %r0, %r1, %r2;
16 setp.gt.s32 %p0, %r3, 1;
17 @%p0 bra L__BB0_2; // Jump to end of kernel if too many threads are started
18 cvt.u64.u32 %rd3, %r3;
19 mov.u64 %rd4, 0;
20
21 // Load variable and parameter from global memory and add them together
22 mad.lo.u64 %rd5, %rd3, 4, 0;
23 add.u64 %rd5, %parameter0, %rd5;
24 ld.global.f32 %var0, [%rd5];
25 mad.lo.u64 %rd6, %rd4, 4, 0;
26 add.u64 %rd6, %parameter1, %rd6;
27 ld.global.f32 %var1, [%rd6];
28 add.f32 %f0, %var0, %var1;
29
30 // Store the result in the result matrix
31 add.u64 %rd7, 0, %rd3;
32 mad.lo.u64 %rd7, %rd7, 4, %parameter2;
33 st.global.f32 [%rd7], %f0;
34
35 L__BB0_2: ret;
36 }

Program 4.3: The slightly simplified PTX kernel for the expression 𝑥1 + 𝑝1. For sim-
plicity, the allocation of registers and the required directives .version and .target have
been removed.

Chapter 5

Evaluation

This thesis aims to determine whether one of the two GPU evaluators is faster than
the current CPU evaluator. This chapter describes the performance evaluation process.
First, the environment in which the performance benchmarks are conducted is explained.
Next the individual results for the GPU interpreter and transpiler are presented indi-
vidually. This section also includes the performance tuning steps taken to achieve these
results. Finally, the results of the GPU evaluators are compared to those of the CPU
evaluator to answer the research questions of this thesis.

5.1 Benchmark Environment
In this section, the benchmark environment used to evaluate the performance is outlined.
To ensure the validity and reliability of the results, it is necessary to specify the details of
the environment. This includes a description of the hardware and software configuration
as well as the performance evaluation process. With this, the variance between the
results is minimised, which allows for better reproducibility and comparability between
the implementations.

5.1.1 Hardware Configuration
The hardware configuration is the most important aspect of the benchmark environ-
ment. The capabilities of both the CPU and GPU can have a significant impact on the
resulting performance. The following sections outline the importance of the individual
components as well as the actual hardware used for the benchmarks.

GPU

The GPU plays a crucial role, as different microarchitectures typically require different
optimisations. Although the evaluators can generally operate on any Nvidia GPU with
a compute capability of at least 6.1, they are tuned for the Ampere microarchitecture
which has a compute capability of 8.6. Despite the evaluators being tuned for this
microarchitecture, more recent ones can be used as well. However, additional tuning is
required to ensure that the evaluators can utilise the hardware to its fullest potential.

50

5. Evaluation 51

Tuning must also be done on a per-problem basis. In particular, the number of
variable sets can impact how well the hardware is utilised. Therefore, it is crucial to de-
termine which configuration yields the best performance. Section 5.2 outlines a strategy
for tuning the configuration to a new problem.

CPU

Although the GPU plays a crucial role, work is also carried out on the CPU. The
interpreter primarily utilises the CPU for data transfer and the pre-processing step,
making it more GPU-bound as most of the work is performed on the GPU. However,
the transpiler additionally relies on the CPU to perform the transpilation step. This
step involves generating a kernel for each expression and sending these kernels to the
driver for compilation, a process also handled by the CPU. By contrast, the interpreter
only required one kernel to be converted into PTX and compiled by the driver once.
Consequently, the transpiler is significantly more CPU-bound and variations in the CPU
used have a much greater impact. Therefore, using a more powerful CPU benefits the
transpiler more than the interpreter.

System Memory

In addition to the hardware configuration of the GPU and CPU, system memory (RAM)
also plays a crucial role. Although RAM does not directly contribute to the overall
performance, it can have a noticeable indirect impact due to its role in caching and
general data storage. Insufficient RAM forces the operating system to use the page file,
which is stored on a considerably slower SSD. This leads to slower data access, thereby
reducing the overall performance of the application.

As seen in the list below, only 16 GB of RAM were available during the benchmarking
process. This amount is insufficient to utilise caching to the extent outlined in Chapter
4. Additional RAM was not available, meaning caching had to be disabled, which will
be further explained in Section 5.2.

Hardware

With the requirements explained above in mind, the following hardware is used to
perform the benchmarks for the CPU-based evaluator, which was used as the baseline,
as well as for the GPU-based evaluators:

• Intel i5 12500
• Nvidia RTX 3060 Ti
• 16 GB 4400 MT/s DDR5 RAM

5.1.2 Software Configuration
Apart from the hardware, the performance of the evaluators can also be significantly
affected by the software. Primarily these three software components or libraries are
involved in the performance of the evaluators:

• GPU Driver
• Julia

5. Evaluation 52

• CUDA.jl
Typically, newer versions of these components include, among other things, perfor-

mance improvements. This is why it is important to specify the version which is used
for benchmarking. The GPU driver has version 561.17, Julia has version 1.11.5, and
CUDA.jl has version 5.8.1. As with the hardware configuration, this ensures that the
results are reproducible and comparable to each other.

5.1.3 Performance Evaluation Process
With the hardware and software configuration established, the process of benchmarking
the implementations can be described. This process is designed to simulate the load
and scenario in which these evaluators will be used. The Nikuradse dataset (Nikuradse,
1950) has been chosen as the data source. The dataset models the laws of flow in rough
pipes and provides 362 variable sets, each set containing two variables. This dataset has
first been used by Guimerà et al. (2020) to benchmark a symbolic regression algorithm.

Since only the evaluators are benchmarked, the expressions to be evaluated must
already exist. These expressions are generated for the Nikuradse dataset using the ex-
haustive symbolic regression algorithm proposed by Bartlett et al. (2024). This ensures
that the expressions are representative of what needs to be evaluated in a real-world
application. In total, three benchmarks will be conducted, each having a different goal,
which will be further explained in the following paragraphs.

The first benchmark involves a very large set of roughly 250 000 expressions. This
means that all 250 000 expressions are evaluated in a single generation when using GP.
In a typical generation, significantly fewer expressions would be evaluated. However,
this benchmark is designed to show how the evaluators can handle large volumes of
data. Evaluating such a high number of expressions also has some drawbacks, as will be
explained in Section 5.2.

A second benchmark, with slight modifications to the first, is also conducted. Given
that GPUs are very good at executing work in parallel, the number of variable sets
is increased in this benchmark. Therefore, the second benchmark consists of the same
250 000 expressions, but the number of variable sets has been increased by a factor of ten
to a total of 3 620. This benchmark aims to demonstrate how the GPU is best used for
large datasets, which is also more representative of the scenarios where the evaluators
will be employed.

Finally, a third benchmark will be performed to mimic a realistic load. For this
benchmark the number of expressions has been reduced to roughly 10 000, and the
number of variable sets is again 362. The purpose of this benchmark is to demonstrate
how the evaluators are likely perform in a typical scenario.

All three benchmarks also simulate a parameter optimisation step, as this is the sce-
nario in which these evaluators will be used in. For parameter optimisation, 100 steps
are used, meaning that all expressions will be evaluated 100 times. During the bench-
mark, this process is simulated by re-transmitting the parameters instead of generating
new ones. Generating new parameters is not part of the evaluators and is therefore
not implemented. However, because the parameters are re-transmitted every time, the
overhead of sending the data is taken into account. This overhead is part of the evalua-
tors and is an additional burden that the CPU implementation does not have, making

5. Evaluation 53

important to be measured.

Measuring Performance

The performance measurements are taken, using the BenchmarkTools.jl1 package. It is
the standard for benchmarking applications in Julia, which makes it an obvious choice
for measuring the performance of the evaluators.

It offers extensive support for measuring and comparing results of different im-
plementations and versions of the same implementation. Benchmark groups allow to
categorise the different implementations, take performance measurements and compare
them. When taking performance measurements, it also supports setting a timeout and
most importantly, set the number of samples to be taken. This is especially important,
as it ensures to produce stable results by combating run-to-run variance. For this thesis,
a sample size of 50 has been used. This means that each of the previously-mentioned
benchmarks, gets executed 50 times.

5.2 Results
This section presents the results of the benchmarks described above. First the results for
the GPU-based interpreter will be presented alongside the performance tuning process.
This is followed by the results of the transpiler as well as the performance tuning process.
Finally, both GPU-based evaluators will be compared with each other to determine
which of them performs the best. Additionally, these evaluators will be compared against
the CPU-based interpreter to answer the research questions of this thesis.

BECAUSE OF RAM CONSTRAINTS, CACHING IS NOT USED TO THE FULL
EXTEND AS IN CONTRAST TO HOW IT IS EXPLAINED IN THE IMPLEMEN-
TATION CHAPTER. I hope I can cache the frontend. If only the finished kernels can
not be cached, move this explanation to the transpiler section below and update the
reference in subsubsection “System Memory”

5.2.1 Interpreter
In this section, the results for the interpreter are presented...

Benchmark 1

Benchmark 2

Benchmark 3

Performance Tuning

Document the process of performance tuning
Initial: no cache; 256 blocksize; exprs pre-processed and sent to GPU on every call;

vars sent on every call; frontend + dispatch are multithreaded
1.) Done before parameter optimisation loop: Frontend, transmitting Exprs and

Variables (improved runtime) 2.) tuned blocksize to have as little wasted threads as
1https://juliaci.github.io/BenchmarkTools.jl/stable/

https://juliaci.github.io/BenchmarkTools.jl/stable/

5. Evaluation 54

Figure 5.1: The results of the GPU-based interpreter for benchmark 1

possible (new blocksize 121 -> 3-blocks -> 363 threads but 362 threads needed per
expression) (128 should lead to the same results. Talk here a bit what to look out for,
so block-size should be a multiple of 32 and should divide the nr. of varsets as best
as possible to a whole number without going over) 3.) Minor optimisations. Reduced
stacksize; reduced memory allocations on the CPU; reduced GC pressure

CPU and GPU are almost all the time at 100% utilisation (GPU every now and then
drops to 70%), meaning it is quite balanced. Uncached but multithreaded frontend only
makes up a small percentage of the total runtime (optimisations there are not really
needed, which is good because enabling caching took up too much RAM) Most of the
time is spent doing the parameter optimisation step

5.2.2 Transpiler
Results only for Transpiler (also contains final kernel configuration and probably quick
overview/recap of the implementation used and described in Implementation section

Benchmark 1

Benchmark 2

Benchmark 3

5.2.3 Performance Tuning
Document the process of performance tuning

Initial: no cache; 256 blocksize; exprs pre-processed and transpiled on every call;
vars sent on every call; frontend + transpilation + dispatch are multithreaded

1.) Done before parameter optimisation loop: Frontend, transmitting Exprs and
Variables (improved runtime) 2.) All expressions to execute are transpiled first (before
they were transpiled for every execution, even in parameter optimisation scenarios).
Compilation is still done every time, because too little RAM was available (compilation
takes the most time, so this is only a minor boost). Also tried blocksize of 121. However,
kernel itself is very fast anyway, so this didn’t make a difference (further proof that the
CPU is the bottleneck here)

CPU at 100% GPU at around 30%. Heavily CPU bottlenecked. Mainly due to PTX
compilation taking by far the longest (while kernels are finished more or less instantly)

5. Evaluation 55

5.2.4 Comparison
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter

talk about that compute portion is just too little. Only more complex expressions
with higher var set count benefit well (make one or two performance evaluations, with
10 larger expressions and at least 1k var sets and present that here as point for that
statement)

Benchmark 1

Benchmark 2

CPU Did not finish due to RAM constraints

Benchmark 3

Chapter 6

Conclusion and Future Work

Summarise the results talk again how a typical input is often not complex enough
(basically repeat that statement from comparison section in evaluation)

6.1 Future Work
talk about what can be improved

Frontend: 1.) extend frontend to support ternary operators (basically if the frontend
sees a multiplication and an addition it should collapse them to an FMA instruction)

Transpiler: 1.) transpile expression directly from Julia AST -> would save time
because no intermediate representation needs to be created (looses step and gains per-
formance, but also makes transpiler itself more complex; since expressions do not need
to be sent to the GPU, the IR theoretically isn’t needed) 2.) Better register management
strategy might be helpful -> look into register pressure etc.

CPU Interpreter: Probably more worth to dive into parallelising cpu interpreter itself
(not really future work, as you wouldn’t write a paper about that)

56

References

Literature

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,
techniques, and tools (2nd edition). Addison-Wesley Longman Publishing Co.,
Inc. (Cit. on pp. 17, 45).

Bartlett, D. J., Desmond, H., & Ferreira, P. G. (2024). Exhaustive symbolic regression.
IEEE Transactions on Evolutionary Computation, 28 (4), 950–964. https://doi
.org/10.1109/TEVC.2023.3280250 (cit. on pp. 5, 52)

Bastidas Fuertes, A., Pérez, M., & Meza, J. (2023a). Transpiler-based architecture design
model for back-end layers in software development. Applied Sciences, 13 (20),
11371. https://doi.org/10.3390/app132011371 (cit. on p. 20)

Bastidas Fuertes, A., Pérez, M., & Meza Hormaza, J. (2023b). Transpilers: A systematic
mapping review of their usage in research and industry. Applied Sciences, 13 (6),
3667. https://doi.org/10.3390/app13063667 (cit. on p. 20)

Besard, T., Churavy, V., Edelman, A., & Sutter, B. D. (2019a). Rapid software pro-
totyping for heterogeneous and distributed platforms. Advances in Engineering
Software, 132, 29–46. https://doi.org/10.1016/j.advengsoft.2019.02.002 (cit. on
pp. 7, 32)

Besard, T., Foket, C., & De Sutter, B. (2019b). Effective extensible programming: Un-
leashing julia on GPUs. IEEE Transactions on Parallel and Distributed Systems,
30 (4), 827–841. https://doi.org/10.1109/TPDS.2018.2872064 (cit. on p. 7)

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM Review, 59 (1), 65–98. https://doi.org/10.1137
/141000671 (cit. on p. 31)

Bomarito, G. F., Leser, P. E., Strauss, N. C. M., Garbrecht, K. M., & Hochhalter,
J. D. (2022). Bayesian model selection for reducing bloat and overfitting in
genetic programming for symbolic regression. Proceedings of the Genetic and
Evolutionary Computation Conference Companion, 526–529. https://doi.org/1
0.1145/3520304.3528899 (cit. on p. 5)

Brodtkorb, A. R., Hagen, T. R., & Sætra, M. L. (2013). Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel and
Distributed Computing, 73 (1), 4–13. https://doi.org/10.1016/j.jpdc.2012.04.00
3 (cit. on p. 2)

Bruneton, J.-P. (2025, March 24). Enhancing symbolic regression with quality-diversity
and physics-inspired constraints. https://doi.org/10.48550/arXiv.2503.19043.
(Cit. on p. 5)

57

https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.1109/TEVC.2023.3280250
https://doi.org/10.3390/app132011371
https://doi.org/10.3390/app13063667
https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1145/3520304.3528899
https://doi.org/10.1145/3520304.3528899
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.48550/arXiv.2503.19043

References 58

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 113 (15), 3932–3937. https://doi.org/10.1
073/pnas.1517384113 (cit. on p. 5)

Cano, A., & Ventura, S. (2014). GPU-parallel subtree interpreter for genetic program-
ming. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, 887–894. https://doi.org/10.1145/2576768.2598272 (cit. on p. 19)

Chaber, P., & Ławryńczuk, M. (2016). Effectiveness of PID and DMC control algo-
rithms automatic code generation for microcontrollers: Application to a thermal
process. 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol),
618–623. https://doi.org/10.1109/SYSTOL.2016.7739817 (cit. on p. 20)

Collange, C. (2011, September). Stack-less SIMT reconvergence at low cost (Research
Report). ENS Lyon. https://hal.science/hal-00622654. (Cit. on p. 11)

Cooper, K. D., & Torczon, L. (2022). Engineering a compiler (3rd ed.). Elsevier. http
://dx.doi.org/10.1016/C2014-0-01395-0. (Cit. on pp. 17, 45)

Dietz, H. G., & Young, B. D. (2010). MIMD interpretation on a GPU. In G. R. Gao,
L. L. Pollock, J. Cavazos, & X. Li (Eds.), Languages and compilers for parallel
computing (pp. 65–79). Springer. https://doi.org/10.1007/978-3-642-13374-9
_5. (Cit. on p. 19)

Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2005). The GPU as a high performance
computational resource. Proceedings of the 21st Spring Conference on Computer
Graphics, 21–26. https://doi.org/10.1145/1090122.1090126 (cit. on p. 6)

Dong, J., Zhong, J., Liu, W.-L., & Zhang, J. (2024). Evolving equation learner for
symbolic regression. IEEE Transactions on Evolutionary Computation, 1–1. ht
tps://doi.org/10.1109/TEVC.2024.3404650 (cit. on p. 5)

ElTantawy, A., & Aamodt, T. M. (2016). MIMD synchronization on SIMT architectures.
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 1–14. https://doi.org/10.1109/MICRO.2016.7783714 (cit. on p. 11)

Faingnaert, T., Besard, T., & De Sutter, B. (2022). Flexible performant GEMM kernels
on GPUs. IEEE Transactions on Parallel and Distributed Systems, 33 (9), 2230–
2248. https://doi.org/10.1109/TPDS.2021.3136457 (cit. on p. 32)

Franchetti, F., Kral, S., Lorenz, J., & Ueberhuber, C. (2005). Efficient utilization of
SIMD extensions. Proceedings of the IEEE, 93 (2), 409–425. https://doi.org/10
.1109/JPROC.2004.840491 (cit. on p. 8)

Fua, P., & Lis, K. (2020, January 8). Comparing python, go, and c++ on the n-queens
problem. https://doi.org/10.48550/arXiv.2001.02491. (Cit. on p. 19)

Fung, W. W. L., & Aamodt, T. M. (2011). Thread block compaction for efficient SIMT
control flow. 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 25–36. https://doi.org/10.1109/HPCA.2011.5749714
(cit. on p. 11)

Georgescu, S., Chow, P., & Okuda, H. (2013). GPU acceleration for FEM-based struc-
tural analysis. Archives of Computational Methods in Engineering, 20 (2), 111–
121. https://doi.org/10.1007/s11831-013-9082-8 (cit. on pp. 2, 8)

Gherardi, L., Brugali, D., & Comotti, D. (2012). A java vs. c++ performance evaluation:
A 3d modeling benchmark. In I. Noda, N. Ando, D. Brugali, & J. J. Kuffner

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1145/2576768.2598272
https://doi.org/10.1109/SYSTOL.2016.7739817
https://hal.science/hal-00622654
http://dx.doi.org/10.1016/C2014-0-01395-0
http://dx.doi.org/10.1016/C2014-0-01395-0
https://doi.org/10.1007/978-3-642-13374-9_5
https://doi.org/10.1007/978-3-642-13374-9_5
https://doi.org/10.1145/1090122.1090126
https://doi.org/10.1109/TEVC.2024.3404650
https://doi.org/10.1109/TEVC.2024.3404650
https://doi.org/10.1109/MICRO.2016.7783714
https://doi.org/10.1109/TPDS.2021.3136457
https://doi.org/10.1109/JPROC.2004.840491
https://doi.org/10.1109/JPROC.2004.840491
https://doi.org/10.48550/arXiv.2001.02491
https://doi.org/10.1109/HPCA.2011.5749714
https://doi.org/10.1007/s11831-013-9082-8

References 59

(Eds.), Simulation, modeling, and programming for autonomous robots (pp. 161–
172). Springer. https://doi.org/10.1007/978-3-642-34327-8_17. (Cit. on p. 19)

Guillemot, H. (2022, December 31). Climate models. In K. De Pryck (Ed.), A critical
assessment of the intergovernmental panel on climate change (1st ed., pp. 126–
136). Cambridge University Press. http://dx.doi.org/10.1017/9781009082099.0
18. (Cit. on p. 4)

Guimerà, R., Reichardt, I., Aguilar-Mogas, A., Massucci, F. A., Miranda, M., Pallarès,
J., & Sales-Pardo, M. (2020). A bayesian machine scientist to aid in the solution
of challenging scientific problems. Science Advances, 6 (5), eaav6971. https://d
oi.org/10.1126/sciadv.aav6971 (cit. on p. 52)

Gustafson, S., Burke, E., & Krasnogor, N. (2005). On improving genetic programming
for symbolic regression. 2005 IEEE Congress on Evolutionary Computation, 1,
912–919 Vol.1. https://doi.org/10.1109/CEC.2005.1554780 (cit. on p. 5)

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: A GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev., 40 (4), 195–206. https://d
oi.org/10.1145/1851275.1851207 (cit. on pp. 2, 8)

Han, T. D., & Abdelrahman, T. S. (2011). hiCUDA: High-level GPGPU programming.
IEEE Transactions on Parallel and Distributed Systems, 22 (1), 78–90. https://d
oi.org/10.1109/TPDS.2010.62 (cit. on p. 7)

Hissbach, A.-M., Dick, C., & Lawonn, K. (2022). An overview of techniques for egocen-
tric black hole visualization and their suitability for planetarium applications.
In J. Bender, M. Botsch, & D. A. Keim (Eds.), Vision, modeling, and visual-
ization. The Eurographics Association. https://doi.org/10.2312/vmv.20221207.
(Cit. on p. 7)

Huang, Q., Huang, Z., Werstein, P., & Purvis, M. (2008). GPU as a general purpose
computing resource. 2008 Ninth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, 151–158. https://doi.org/1
0.1109/PDCAT.2008.38 (cit. on p. 7)

Jin, Y., Fu, W., Kang, J., Guo, J., & Guo, J. (2020, January 16). Bayesian symbolic
regression. https://doi.org/10.48550/arXiv.1910.08892. (Cit. on p. 5)

Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming and Evolvable
Machines, 5 (3), 259–269. https://doi.org/10.1023/B:GENP.0000030195.77571
.f9 (cit. on p. 5)

Khairy, M., Wassal, A. G., & Zahran, M. (2019). A survey of architectural approaches for
improving GPGPU performance, programmability and heterogeneity. Journal of
Parallel and Distributed Computing, 127, 65–88. https://doi.org/10.1016/j.jpdc
.2018.11.012 (cit. on p. 12)

Knuth, D. E. (1999). MMIX. In D. E. Knuth (Ed.), MMIXware: A RISC computer for
the third millennium (pp. 2–61). Springer. https://doi.org/10.1007/3-540-4661
1-8_2. (Cit. on p. 8)

Korns, M. F. (2011). Accuracy in symbolic regression. In R. Riolo, E. Vladislavleva, &
J. H. Moore (Eds.), Genetic programming theory and practice IX (pp. 129–151).
Springer. https://doi.org/10.1007/978-1-4614-1770-5_8. (Cit. on p. 5)

Korns, M. F. (2015). Extremely accurate symbolic regression for large feature problems.
In R. Riolo, W. P. Worzel, & M. Kotanchek (Eds.), Genetic programming theory

https://doi.org/10.1007/978-3-642-34327-8_17
http://dx.doi.org/10.1017/9781009082099.018
http://dx.doi.org/10.1017/9781009082099.018
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1109/CEC.2005.1554780
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.2312/vmv.20221207
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.48550/arXiv.1910.08892
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1007/3-540-46611-8_2
https://doi.org/10.1007/3-540-46611-8_2
https://doi.org/10.1007/978-1-4614-1770-5_8

References 60

and practice XII (pp. 109–131). Springer International Publishing. https://doi
.org/10.1007/978-3-319-16030-6_7. (Cit. on p. 5)

Köster, M., Groß, J., & Krüger, A. (2020a). Massively parallel rule-based interpreter
execution on GPUs using thread compaction. International Journal of Parallel
Programming, 48 (4), 675–691. https://doi.org/10.1007/s10766-020-00670-2
(cit. on pp. 11, 19)

Köster, M., Groß, J., & Krüger, A. (2020b). High-performance simulations on GPUs
using adaptive time steps. In M. Qiu (Ed.), Algorithms and architectures for
parallel processing (pp. 369–385). Springer International Publishing. https://do
i.org/10.1007/978-3-030-60245-1_26. (Cit. on p. 7)

Köster, M., Groß, J., & Krüger, A. (2022). MACSQ: Massively accelerated DeepQ learn-
ing on GPUs using on-the-fly state construction. In H. Shen, Y. Sang, Y. Zhang,
N. Xiao, H. R. Arabnia, G. Fox, A. Gupta, & M. Malek (Eds.), Parallel and dis-
tributed computing, applications and technologies (pp. 383–395). Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-030-96772-7_35. (Cit. on
p. 8)

Koza, J. R. (2010). Human-competitive results produced by genetic programming. Ge-
netic Programming and Evolvable Machines, 11 (3), 251–284. https://doi.org/1
0.1007/s10710-010-9112-3 (cit. on p. 5)

Koza, J. (1994). Genetic programming as a means for programming computers by nat-
ural selection. Statistics and Computing, 4 (2). https://doi.org/10.1007/BF001
75355 (cit. on pp. 5, 6)

Kronberger, G., Burlacu, B., Kommenda, M., Winkler, S. M., & Affenzeller, M. (2024,
July). Symbolic regression. Chapman; Hall/CRC. http://dx.doi.org/10.1201/97
81315166407. (Cit. on pp. 5, 6)

Langdon, W. B., & Banzhaf, W. (2008). A SIMD interpreter for genetic programming
on GPU graphics cards. In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Es-
parcia Alcázar, I. De Falco, A. Della Cioppa, & E. Tarantino (Eds.), Genetic
programming (pp. 73–85). Springer. https://doi.org/10.1007/978-3-540-78671
-9_7. (Cit. on p. 19)

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. International Symposium on Code Generation and
Optimization, 2004. CGO 2004., 75–86. https://doi.org/10.1109/CGO.2004.12
81665 (cit. on p. 18)

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., & Dubey, P.
(2010). Debunking the 100x GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU. Proceedings of the 37th annual international sym-
posium on Computer architecture, 451–460. https://doi.org/10.1145/1815961.1
816021 (cit. on p. 8)

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., & Battaglia, P. (2022, February 4). Redis-
covering orbital mechanics with machine learning. https://doi.org/10.48550/ar
Xiv.2202.02306. (Cit. on p. 5)

Lin, D.-L., Ren, H., Zhang, Y., Khailany, B., & Huang, T.-W. (2023). From RTL to
CUDA: A GPU acceleration flow for RTL simulation with batch stimulus. Pro-

https://doi.org/10.1007/978-3-319-16030-6_7
https://doi.org/10.1007/978-3-319-16030-6_7
https://doi.org/10.1007/s10766-020-00670-2
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1007/978-3-030-60245-1_26
https://doi.org/10.1007/978-3-030-96772-7_35
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
http://dx.doi.org/10.1201/9781315166407
http://dx.doi.org/10.1201/9781315166407
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.48550/arXiv.2202.02306
https://doi.org/10.48550/arXiv.2202.02306

References 61

ceedings of the 51st International Conference on Parallel Processing, 1–12. http
s://doi.org/10.1145/3545008.3545091 (cit. on p. 20)

Lin, W.-C., & McIntosh-Smith, S. (2021). Comparing julia to performance portable
parallel programming models for HPC. 2021 International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 94–105. https://doi.org/10.1109/PMBS54543.2021.000
16 (cit. on pp. 7, 31, 32)

Ling, M., Yu, Y., Wu, H., Wang, Y., Cordy, J. R., & Hassan, A. E. (2022). In rust we
trust: A transpiler from unsafe c to safer rust. Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceed-
ings, 354–355. https://doi.org/10.1145/3510454.3528640 (cit. on p. 20)

Marcelino, M., & Leitão, A. M. (2022). Transpiling python to julia using PyJL. https
://doi.org/10.5281/ZENODO.6332890 (cit. on p. 20)

Martius, G., & Lampert, C. H. (2016). Extrapolation and learning equations. https://d
oi.org/10.48550/ARXIV.1610.02995. (Cit. on p. 5)

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction. 2008 IEEE International Symposium on Parallel and Distributed
Processing, 1–7. https://doi.org/10.1109/IPDPS.2008.4536351 (cit. on pp. 2, 7)

Moses, W. S., Ivanov, I. R., Domke, J., Endo, T., Doerfert, J., & Zinenko, O. (2023).
High-performance GPU-to-CPU transpilation and optimization via high-level
parallel constructs. Proceedings of the 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, 119–134. https://doi.org
/10.1145/3572848.3577475 (cit. on p. 20)

Nikuradse, J. (1950, November). Laws of flow in rough pipes. https://digital.library.un
t.edu/ark:/67531/metadc63009/. (Cit. on p. 52)

Palacios, J., & Triska, J. (2011). A comparison of modern GPU and CPU architectures:
And the common convergence of both. https://api.semanticscholar.org/Corpus
ID:61428375 (cit. on p. 8)

Pfahler, L., & Morik, K. (2020). Semantic search in millions of equations. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 135–143. https://doi.org/10.1145/3394486.3403056 (cit. on p. 4)

Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong, W. A., Baer, J.-L., Bershad,
B. N., & Levy, H. M. (1996). The structure and performance of interpreters.
SIGPLAN Not., 31 (9), 150–159. https://doi.org/10.1145/248209.237175 (cit.
on p. 19)

Sahoo, S. S., Lampert, C. H., & Martius, G. (2018). Learning equations for extrapolation
and control. https://doi.org/10.48550/ARXIV.1806.07259. (Cit. on p. 5)

Sun, F., Liu, Y., Wang, J.-X., & Sun, H. (2023, February 2). Symbolic physics learner:
Discovering governing equations via monte carlo tree search. https://doi.org/1
0.48550/arXiv.2205.13134. (Cit. on p. 6)

Tian, X., Saito, H., Girkar, M., Preis, S. V., Kozhukhov, S. S., Cherkasov, A. G., Nelson,
C., Panchenko, N., & Geva, R. (2012). Compiling c/c++ SIMD extensions for
function and loop vectorizaion on multicore-SIMD processors. 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 2349–2358. https://doi.org/10.1109/IPDPSW.2012.292 (cit. on p. 8)

https://doi.org/10.1145/3545008.3545091
https://doi.org/10.1145/3545008.3545091
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1145/3510454.3528640
https://doi.org/10.5281/ZENODO.6332890
https://doi.org/10.5281/ZENODO.6332890
https://doi.org/10.48550/ARXIV.1610.02995
https://doi.org/10.48550/ARXIV.1610.02995
https://doi.org/10.1109/IPDPS.2008.4536351
https://doi.org/10.1145/3572848.3577475
https://doi.org/10.1145/3572848.3577475
https://digital.library.unt.edu/ark:/67531/metadc63009/
https://digital.library.unt.edu/ark:/67531/metadc63009/
https://api.semanticscholar.org/CorpusID:61428375
https://api.semanticscholar.org/CorpusID:61428375
https://doi.org/10.1145/3394486.3403056
https://doi.org/10.1145/248209.237175
https://doi.org/10.48550/ARXIV.1806.07259
https://doi.org/10.48550/arXiv.2205.13134
https://doi.org/10.48550/arXiv.2205.13134
https://doi.org/10.1109/IPDPSW.2012.292

References 62

Verbraeck, A., & Eisemann, E. (2021). Interactive black-hole visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 27 (2), 796–805. https://doi.o
rg/10.1109/TVCG.2020.3030452 (cit. on p. 7)

Wang, C.-K., & Chen, P.-S. (2015). Automatic scoping of task clauses for the OpenMP
tasking model. The Journal of Supercomputing, 71 (3), 808–823. https://doi.or
g/10.1007/s11227-014-1326-3 (cit. on p. 20)

Wang, L.-T., Chang, Y.-W., & Cheng, K.-T. (2009, March 11). Electronic design au-
tomation: Synthesis, verification, and test. Morgan Kaufmann. (Cit. on p. 20).

Werner, M., Junginger, A., Hennig, P., & Martius, G. (2021, May 13). Informed equation
learning. https://doi.org/10.48550/arXiv.2105.06331. (Cit. on pp. 4, 5)

Winter, M., Parger, M., Mlakar, D., & Steinberger, M. (2021). Are dynamic memory
managers on GPUs slow? a survey and benchmarks. Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 219–
233. https://doi.org/10.1145/3437801.3441612 (cit. on p. 41)

Zhang, Y., Ren, H., & Khailany, B. (2020). Opportunities for RTL and gate level simula-
tion using GPUs. Proceedings of the 39th International Conference on Computer-
Aided Design, 1–5. https://doi.org/10.1145/3400302.3415773 (cit. on p. 20)

Online sources

AMD. (2025a, February). Hardware features — HIP 6.3.42134 documentation. Re-
trieved March 15, 2025, from https ://rocm.docs .amd.com/projects/HIP/e
n/latest/reference/hardware_features.html. (Cit. on p. 13)

AMD. (2025b, February). HIP programming model — HIP 6.3.42134 documentation.
Retrieved March 9, 2025, from https://rocm.docs.amd.com/projects/HIP/en/l
atest/understand/programming_model.html. (Cit. on pp. 9, 10, 14)

GCC. (2025, January). GCC online documentation. Retrieved March 18, 2025, from ht
tps://gcc.gnu.org/onlinedocs/. (Cit. on p. 18)

Intel. (1978). MCS·86 assembly language converter operating instructions for ISIS·II
users [Technical Report]. Retrieved March 21, 2025, from http://www.bitsaver
s.org/pdf/intel/ISIS_II/9800642A_MCS-86_Assembly_Language_Converter
_Operating_Instructions_for_ISIS-II_Users_Mar79.pdf. (Cit. on p. 20)

Lindholm, T., Yellin, F., Bracha, G., Buckley, A., & Smith, D. (2025, February). The
java® virtual machine specification. Retrieved March 18, 2025, from https://do
cs.oracle.com/javase/specs/jvms/se24/html/. (Cit. on pp. 18, 19)

Microsoft. (2023, March). Overview of .NET framework - .NET framework | microsoft
learn. Retrieved March 20, 2025, from https://learn.microsoft.com/en-us/dotn
et/framework/get-started/overview. (Cit. on p. 18)

Microsoft. (2025, March). TypeScript: The starting point for learning TypeScript. Re-
trieved March 21, 2025, from https://www.typescriptlang.org/docs/handbook
/intro.html. (Cit. on p. 20)

Nvidia. (2025a, March). CUDA c++ best practices guide 12.8 documentation. Retrieved
March 16, 2025, from https://docs.nvidia.com/cuda/cuda-c-best-practices-gui
de/index.html. (Cit. on p. 16)

https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.1109/TVCG.2020.3030452
https://doi.org/10.1007/s11227-014-1326-3
https://doi.org/10.1007/s11227-014-1326-3
https://doi.org/10.48550/arXiv.2105.06331
https://doi.org/10.1145/3437801.3441612
https://doi.org/10.1145/3400302.3415773
https://rocm.docs.amd.com/projects/HIP/en/latest/reference/hardware_features.html
https://rocm.docs.amd.com/projects/HIP/en/latest/reference/hardware_features.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
http://www.bitsavers.org/pdf/intel/ISIS_II/9800642A_MCS-86_Assembly_Language_Converter_Operating_Instructions_for_ISIS-II_Users_Mar79.pdf
http://www.bitsavers.org/pdf/intel/ISIS_II/9800642A_MCS-86_Assembly_Language_Converter_Operating_Instructions_for_ISIS-II_Users_Mar79.pdf
http://www.bitsavers.org/pdf/intel/ISIS_II/9800642A_MCS-86_Assembly_Language_Converter_Operating_Instructions_for_ISIS-II_Users_Mar79.pdf
https://docs.oracle.com/javase/specs/jvms/se24/html/
https://docs.oracle.com/javase/specs/jvms/se24/html/
https://learn.microsoft.com/en-us/dotnet/framework/get-started/overview
https://learn.microsoft.com/en-us/dotnet/framework/get-started/overview
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

References 63

Nvidia. (2025b, March). CUDA c++ programming guide. Retrieved November 22, 2024,
from https://docs.nvidia .com/cuda/cuda- c- programming- guide/. (Cit. on
pp. 7–9, 15, 24, 32)

Nvidia. (2025c, March). Nsight compute — NsightCompute 12.8 documentation. Re-
trieved March 16, 2025, from https://docs.nvidia.com/nsight-compute/Nsight
Compute/index.html#occupancy-calculator. (Cit. on p. 15)

Nvidia. (2025d, March). Parallel thread execution ISA version 8.7. Retrieved March 15,
2025, from https://docs.nvidia.com/cuda/parallel-thread-execution/. (Cit. on
pp. 16, 17, 46)

Sutter, H. (2004, December). The free lunch is over: A fundamental turn toward con-
currency in software. Retrieved March 13, 2025, from http://www.gotw.ca/pu
blications/concurrency-ddj.htm. (Cit. on p. 1)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/cuda/parallel-thread-execution/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

64

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Research Question
	Thesis Structure

	Fundamentals and Related Work
	Equation learning
	GPGPU
	Programming GPUs
	PTX

	Compilers
	Interpreters
	Transpilers

	Concept and Design
	Requirements
	Architecture
	Pre-Processing
	Interpreter
	Transpiler

	Implementation
	Technologies
	CPU side
	GPU side

	Pre-Processing
	Intermediate Representation
	Processing

	Interpreter
	CPU Side
	GPU Side

	Transpiler
	CPU Side
	Transpiler Backend
	GPU Side

	Evaluation
	Benchmark Environment
	Hardware Configuration
	Software Configuration
	Performance Evaluation Process

	Results
	Interpreter
	Transpiler
	Performance Tuning
	Comparison

	Conclusion
	Future Work

	References
	Literature
	Online sources

