module Interpreter using CUDA using StaticArrays using ..ExpressionProcessing using ..Utils export interpret "Interprets the given expressions with the values provided. # Arguments - cudaExprs::CuArray{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form and already sent to the GPU. The type information in the signature is missing, because creating a CuArray{ExpressionProcessing.PostfixType} results in a mor everbose type definition - cudaVars::CuArray{Float32} : The variables to use. Each column is mapped to the variables x1..xn. The type information is missing due to the same reasons as cudaExprs - parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression - kwparam ```frontendCache```: The cache that stores the (partial) results of the frontend " function interpret(cudaExprs, numExprs::Integer, exprsInnerLength::Integer, cudaVars, variableColumns::Integer, variableRows::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32} cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression # put into seperate cuArray, as this is static and would be inefficient to send seperatly to each kernel cudaStepsize = CuArray([exprsInnerLength, Utils.get_max_inner_length(parameters), variableRows]) # max num of values per expression; max nam of parameters per expression; number of variables per expression # each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions cudaResults = CuArray{Float32}(undef, variableColumns, numExprs) # Start kernel for each expression to ensure that no warp is working on different expressions numThreads = min(variableColumns, 128) numBlocks = cld(variableColumns, numThreads) Threads.@threads for i in 1:numExprs # multithreaded to speedup dispatching (seems to have improved performance) @cuda threads=numThreads blocks=numBlocks fastmath=true interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i) end # Reduce GC pressure https://cuda.juliagpu.org/stable/usage/memory/#Avoiding-GC-pressure CUDA.unsafe_free!(cudaParams) CUDA.unsafe_free!(cudaStepsize) return cudaResults end const MAX_STACK_SIZE = 10 # The depth of the stack to store the values and intermediate results function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int) varSetIndex = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based) @inbounds variableCols = length(variables) / stepsize[3] # number of variable sets if varSetIndex > variableCols return end @inbounds firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive @inbounds lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive @inbounds firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive # TODO: Use @cuDynamicSharedMem/@cuStaticSharedMem for variables and or parameters operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage operationStackTop = 0 # stores index of the last defined/valid value @inbounds firstVariableIndex = ((varSetIndex-1) * stepsize[3]) # Exclusive @inbounds for i in firstExprIndex:lastExprIndex token = expressions[i] if token.Type == EMPTY break elseif token.Type == VARIABLE operationStackTop += 1 operationStack[operationStackTop] = variables[firstVariableIndex + token.Value] elseif token.Type == PARAMETER operationStackTop += 1 operationStack[operationStackTop] = parameters[firstParamIndex + token.Value] elseif token.Type == FLOAT32 operationStackTop += 1 operationStack[operationStackTop] = reinterpret(Float32, token.Value) elseif token.Type == OPERATOR opcode = reinterpret(Operator, token.Value) if opcode == ADD operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1] elseif opcode == SUBTRACT operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1] elseif opcode == MULTIPLY operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1] elseif opcode == DIVIDE operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1] elseif opcode == POWER operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1] elseif opcode == ABS operationStack[operationStackTop] = abs(operationStack[operationStackTop]) elseif opcode == LOG operationStack[operationStackTop] = log(operationStack[operationStackTop]) elseif opcode == EXP operationStack[operationStackTop] = exp(operationStack[operationStackTop]) elseif opcode == SQRT operationStack[operationStackTop] = sqrt(operationStack[operationStackTop]) elseif opcode == INV operationStack[operationStackTop] = inv(operationStack[operationStackTop]) end else operationStack[operationStackTop] = NaN32 break end end # "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column) # "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row) resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive @inbounds results[resultIndex] = operationStack[operationStackTop] return end end