module Interpreter using CUDA using StaticArrays using ..ExpressionProcessing export interpret "Interprets the given expressions with the values provided. # Arguments - expressions::Vector{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form - variables::Matrix{Float32} : The variables to use. Each column is mapped to the variables x1..xn - parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression " function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32} variableCols = size(variables, 2) # number of sets of variables to use for each expression cudaVars = CuArray(variables) cudaParams = create_cuda_array(parameters, NaN32) # column corresponds to data for one expression cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression # put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression # each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions cudaResults = CuArray{Float32}(undef, variableCols, length(expressions)) # Start kernel for each expression to ensure that no warp is working on different expressions for i in eachindex(expressions) kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i) config = launch_configuration(kernel.fun) threads = min(variableCols, config.threads) blocks = cld(variableCols, threads) kernel(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i; threads, blocks) end return cudaResults end #TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking const MAX_STACK_SIZE = 25 # The max number of values the expression can have. so Constant values, Variables and parameters function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int) index = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x stride = gridDim().x * blockDim().x # nctaid.x * ntid.x firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive variableCols = length(variables) / stepsize[3] operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage operationStackTop = 0 # stores index of the last defined/valid value for varSetIndex in index:stride firstVariableIndex = ((varSetIndex - 1) * stepsize[3]) # Exclusive for i in firstExprIndex:lastExprIndex if expressions[i].Type == EMPTY break elseif expressions[i].Type == INDEX val = expressions[i].Value operationStackTop += 1 if val > 0 operationStack[operationStackTop] = variables[firstVariableIndex + val] else val = -val operationStack[operationStackTop] = parameters[firstParamIndex + val] end elseif expressions[i].Type == FLOAT32 operationStackTop += 1 operationStack[operationStackTop] = reinterpret(Float32, expressions[i].Value) elseif expressions[i].Type == OPERATOR type = reinterpret(Operator, expressions[i].Value) if type == ADD operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1] elseif type == SUBTRACT operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1] elseif type == MULTIPLY operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1] elseif type == DIVIDE operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1] elseif type == POWER operationStackTop -= 1 operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1] elseif type == ABS operationStack[operationStackTop] = abs(operationStack[operationStackTop]) elseif type == LOG operationStack[operationStackTop] = log(operationStack[operationStackTop]) elseif type == EXP operationStack[operationStackTop] = exp(operationStack[operationStackTop]) elseif type == SQRT operationStack[operationStackTop] = sqrt(operationStack[operationStackTop]) end else operationStack[operationStackTop] = NaN break end end # "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column) # "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row) resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive results[resultIndex] = operationStack[operationStackTop] end return end "Retrieves the number of entries for the largest inner vector" function get_max_inner_length(vec::Vector{Vector{T}})::Int where T maxLength = 0 @inbounds for i in eachindex(vec) if length(vec[i]) > maxLength maxLength = length(vec[i]) end end return maxLength end "Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```" function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T dataCols = get_max_inner_length(data) dataRows = length(data) dataMat = convert_to_matrix(data, invalidElement) cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions copyto!(cudaArr, dataMat) return cudaArr end "Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length. All entries that cannot be filled have ```invalidElement``` as their value " function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T vecCols = get_max_inner_length(vec) vecRows = length(vec) vecMat = fill(invalidElement, vecCols, vecRows) for i in eachindex(vec) vecMat[:,i] = copyto!(vecMat[:,i], vec[i]) end return vecMat end # Kernel function InterpretExplicit!(op::Operator, x, y) index = (blockIdx().x - 1) * blockDim().x + threadIdx().x stride = gridDim().x * blockDim().x if op == ADD # @cuprintln("Performing Addition") # Will only be displayed when the GPU is synchronized for i = index:stride:length(y) @inbounds y[i] += x[i] end return elseif op == SUBTRACT # @cuprintln("Performing Subtraction") # Will only be displayed when the GPU is synchronized for i = index:stride:length(y) @inbounds y[i] -= x[i] end return end end end