
Interpreter and Transpiler for simple
expressions on Nvidia GPUs using Julia

Daniel Wiplinger

M A S T E R A R B E I T

eingereicht am

Fachhochschul-Masterstudiengang

Software Engineering

in Hagenberg

im Januar 2025

Advisor:

DI Dr. Gabriel Kronberger

ii

© Copyright 2025 Daniel Wiplinger

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

iii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated as
such and properly acknowledged. I further declare that this or similar work has not been
submitted for credit elsewhere. This printed copy is identical to the submitted electronic
version.

Hagenberg, January 1, 2025

Daniel Wiplinger

iv

Contents

Declaration iv

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Question . 2
1.3 Methodology . 2

2 Fundamentals and Related Work 3
2.1 Equation learning . 3
2.2 GPGPU . 3

2.2.1 PTX . 3
2.3 GPU Interpretation . 3
2.4 Transpiler . 3

3 Concept and Design 4
3.1 Requirements . 4
3.2 Interpreter . 4

3.2.1 Architecture . 4
3.2.2 Host . 4
3.2.3 Device . 4

3.3 Transpiler . 4
3.3.1 Architecture . 5
3.3.2 Host . 5
3.3.3 Device . 5

4 Implementation 6
4.1 Technologies . 6
4.2 Interpreter . 6
4.3 Transpiler . 6

5 Evaluation 7
5.1 Test environment . 7

v

Contents vi

5.2 Results . 7
5.2.1 Interpreter . 7
5.2.2 Transpiler . 7
5.2.3 Comparison . 7

6 Conclusion 8
6.1 Future Work . 8

References 9
Literature . 9

Abstract

This should be a 1-page (maximum) summary of your work in English.

vii

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit, Umfang max. 1 Seite. ...

viii

Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Lastly the methodology on how to answer these questions will be explained.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many different fields.
For example video games need optimisation to lower the minimum hardware require-
ments which allows more people to run the game. Another example where optimisation
is important are computer simulations. For those, optimisation is even more crucial, as
this allows the scientists to run more detailed simulations or get the simulation results
faster. Equation learning is another field that can heavily benefit from optimisation.
One part of equation learning, is to evaluate the expressions generated by the algorithm
which can make up a significant portion of the runtime of the algorithm. This thesis
is concerned with optimising the evaluation part to increase the overall performance of
the equation learning algorithm.

Considering the following expression 𝑥1 + 5 − abs(𝑝1) * sqrt(𝑥2)/10 + 2^3 which con-
tains simple mathematical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛. This
expression is one example that can be generated by the equation learning algorithm and
needs to be evaluated for the next iteration. Usually multiple expressions are generated
per iteration, which also need to be evaluated. Multiple different values need to be in-
serted for all variables and parameters, drastically increasing the amount of evaluations
that need to be performed.

The free lunch theorem as described by Adam et al. (2019) states that to gain ad-
ditional performance, a developer cannot just hope for future hardware to be faster,
especially on a single core. Therefore, algorithms need to utilise the other cores on a
processor to further acceleration. While this approach means more development over-
head, a much greater speed-up can be achieved. However, in some cases the speed-up
achieved by this is still not large enough and another approach is needed. One of these
approaches is the utilisation of a Graphics Processing Unit (GPU) as an easy and af-
fordable option as compared to compute clusters. Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using the GPU for weather simulation. In ad-

1

1. Introduction 2

dition to computer simulations GPU acceleration also can be found in other places like
networking (Han et al., 2010) or structural analysis of buildings (Georgescu et al., 2013).

1.2 Research Question
With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations using GPUs. Therefore,
the following research questions are formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on graphics cards?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a graphics card than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

In order to answer these questions, two GPU expression evaluators need to be imple-
mented. The first evaluator will interpret the expressions entirely on the GPU, while the
second will transpile them to PTX-Code on the CPU and execute the generated code
on the GPU. Research needs to be done to explore different possibilities to implement
the two evaluators. The current implementation of the equation learning algorithm al-
ready contains a CPU expression evaluator, which will be used to compare the GPU
evaluators against.

1.3 Methodology
Will give an overview of the chapters and what to expect

Chapter 2

Fundamentals and Related Work

2.1 Equation learning
Section describing what equation learning is and why it is relevant for the thesis

2.2 General Purpose Computation on Graphics Processing Units
Describe what GPGPU is and how it differs from classical programming. talk about
architecture (SIMD) and some scientific papers on how they use GPUs to accelerate
tasks

2.2.1 Parallel Thread Execution
Describe what PTX is to get a common ground for the implementation chapter. Prob-
ably a short section

2.3 GPU Interpretation

Different sources on how to do interpretation on the gpu (and maybe interpretation in
general too?)

2.4 Transpiler
talk about what transpilers are and how to implement them. If possible also gpu specific
transpilation. Also talk about compilation and register management. and probably find
a better title

3

Chapter 3

Concept and Design

introduction to what needs to be done. also clarify terms “Host” and “Device” here

3.1 Requirements and Data
short section. Multiple expressions; vars for all expressions; params unique to expression;
operators that need to be supported

3.2 Interpreter
as introduction to this section talk about what “interpreter” means in this context. so
“gpu parses expr and calculates”

3.2.1 Architecture
talk about the coarse grained architecture on how the interpreter will work. (.5 to 1
page probably)

3.2.2 Host
talk about the steps taken to prepare for GPU interpretation

3.2.3 Device
talk about how the actual interpreter will be implemented

3.3 Transpiler
as introduction to this section talk about what “transpiler” means in this context. so
“cpu takes expressions and generates ptx for gpu execution”

4

3. Concept and Design 5

3.3.1 Architecture
talk about the coarse grained architecture on how the transpiler will work. (.5 to 1 page
probably)

3.3.2 Host
talk about how the transpiler is implemented

3.3.3 Device
talk about what the GPU does. short section since the gpu does not do much

Chapter 4

Implementation

4.1 Technologies
Short section; CUDA, PTX, Julia, CUDA.jl

Probably reference the performance evaluation papers for Julia and CUDA.jl

4.2 Interpreter
Talk about how the interpreter has been developed.

4.3 Transpiler
Talk about how the transpiler has been developed

6

Chapter 5

Evaluation

5.1 Test environment

Explain the hardware used, as well as the actual data (how many expressions, variables
etc.)

5.2 Results

talk about what we will see now (results only for interpreter, then transpiler and then
compared with each other and a CPU interpreter)

5.2.1 Interpreter
Results only for Interpreter

5.2.2 Transpiler
Results only for Transpiler

5.2.3 Comparison
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter

7

Chapter 6

Conclusion and Future Work

Summarise the results

6.1 Future Work
talk about what can be improved

8

References

Literature

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No
free lunch theorem: A review. In I. C. Demetriou & P. M. Pardalos (Eds.), Ap-
proximation and optimization : Algorithms, complexity and applications (pp. 57–
82). Springer International Publishing. https://doi.org/10.1007/978-3-030-127
67-1_5. (Cit. on p. 1)

Georgescu, S., Chow, P., & Okuda, H. (2013). GPU acceleration for FEM-based struc-
tural analysis. Archives of Computational Methods in Engineering, 20 (2), 111–
121. https://doi.org/10.1007/s11831-013-9082-8 (cit. on p. 2)

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: A GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev., 40 (4), 195–206. https://d
oi.org/10.1145/1851275.1851207 (cit. on p. 2)

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction [ISSN: 1530-2075]. 2008 IEEE International Symposium on Parallel
and Distributed Processing, 1–7. https://doi.org/10.1109/IPDPS.2008.4536351
(cit. on p. 1)

9

https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/s11831-013-9082-8
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1109/IPDPS.2008.4536351

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

10

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Research Question
	Methodology

	Fundamentals and Related Work
	Equation learning
	GPGPU
	PTX

	GPU Interpretation
	Transpiler

	Concept and Design
	Requirements
	Interpreter
	Architecture
	Host
	Device

	Transpiler
	Architecture
	Host
	Device

	Implementation
	Technologies
	Interpreter
	Transpiler

	Evaluation
	Test environment
	Results
	Interpreter
	Transpiler
	Comparison

	Conclusion
	Future Work

	References
	Literature

