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Chapter 1

Introduction

This chapter provides an entry point for this thesis. First the motivation of exploring
this topic is presented. In addition, the research questions of this thesis are outlined.
Lastly the methodology on how to answer these questions will be explained.

1.1 Background and Motivation
Optimisation and acceleration of program code is a crucial part in many fields. For
example video games need optimisation to lower the minimum hardware requirements
which allows more people to run the game, increasing sales. Another example where
optimisation is important are computer simulations. For those, optimisation is even
more crucial, as this allows the scientists to run more detailed simulations or get the
simulation results faster. Equation learning or symbolic regression is another field that
can heavily benefit from optimisation. One part of equation learning, is to evaluate the
expressions generated by a search algorithm which can make up a significant portion
of the runtime. This thesis is concerned with optimising the evaluation part to increase
the overall performance of equation learning algorithms.

The following expression 5 − abs(𝑥1) * sqrt(𝑥2)/10 + 2^𝑥3 which contains simple
mathematical operations as well as variables 𝑥𝑛 and parameters 𝑝𝑛 is one example
that can be generated by the equation learning algorithm, Usually an equation learning
algorithm generates multiple of such expressions per iteration. Out of these expressions
all possibly relevant ones have to be evaluated. Additionally, multiple different values
need to be inserted for all variables and parameters, drastically increasing the amount
of evaluations that need to be performed.

In his blog, Sutter (2004) described how the free lunch is over in terms of the ever-
increasing performance of hardware like the CPU. He states that to gain additional
performance, developers need to start developing software for multiple cores and not
just hope that on the next generation of CPUs the program magically runs faster.
While this approach means more development overhead, a much greater speed-up can
be achieved. However, in some cases the speed-up achieved by this is still not large
enough and another approach is needed. One of these approaches is the utilisation
of Graphics Processing Units (GPUs) as an easy and affordable option as compared to
compute clusters. Especially when talking about performance per dollar, GPUs are very

1



1. Introduction 2

inexpensive as found by Brodtkorb et al. (2013). Michalakes and Vachharajani (2008)
have shown a noticeable speed-up when using GPUs for weather simulation. In addition
to computer simulations, GPU acceleration also can be found in other places such as
networking (S. Han et al., 2010) or structural analysis of buildings (Georgescu et al.,
2013).

1.2 Research Question
With these successful implementations of GPU acceleration, this thesis also attempts to
improve the performance of evaluating mathematical equations, generated at runtime
for symbolic regression using GPUs. Therefore, the following research questions are
formulated:

• How can simple arithmetic expressions that are generated at runtime be efficiently
evaluated on GPUs?

• Under what circumstances is the evaluation of simple arithmetic expressions faster
on a GPU than on a CPU?

• Under which circumstances is the interpretation of the expressions on the GPU
or the translation to the intermediate language Parallel Thread Execution (PTX)
more efficient?

Answering the first question is necessary to ensure the approach of this thesis is
actually feasible. If it is feasible, it is important to evaluate if evaluating the expressions
on the GPU actually improves the performance over a parallelised CPU evaluator.
To answer if the GPU evaluator is faster than the CPU evaluator, the last research
question is important. As there are two major ways of implementing an evaluator on
the GPU, they need to be implemented and evaluated to finally state if evaluating
expressions on the GPU is faster and if so, which type of implementation results in the
best performance.

1.3 Thesis Structure
In order to answer the research questions, this thesis is divided into the following chap-
ters:
Chapter 2: Fundamentals and Related Work

In this chapter, the topic of this thesis is explored. It covers the fundamentals of
equation learning and how this thesis fits into this field of research. In addition,
the fundamentals of General Purpose GPU computing and how interpreters and
transpilers work are explained. Previous research already done within this topic
is also explored.

Chapter 3: Concept and Design
Within this chapter, the concepts of implementing the GPU interpreter and tran-
spiler are explained. How these two prototypes can be implemented disregarding
concrete technologies is part of this chapter.

Chapter 4: Implementation
This chapter explains the implementation of the GPU interpreter and transpiler.
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The details of the implementation with the used technologies are covered, such
as the interpretation process and the transpilation of the expressions into Parallel
Thread Execution (PTX) code.

Chapter 5: Evaluation
The software and hardware requirements and the evaluation environment are in-
troduced in this chapter. All three evaluators will be compared against each other
and the form of the expressions used for the comparisons are outlined. The com-
parison will not only include the time taken for the pure evaluation, but it will
also include the overhead, like PTX code generation. Finally, the results of the
comparison of the GPU and CPU evaluators are presented to show which of these
yields the best performance.

Chapter 6: Conclusion
In the final chapter, the entire work is summarised. A brief overview of the im-
plementation as well as the evaluation results will be provided. Additionally, an
outlook of possible future research is given.

With this structure the process of creating and evaluating a basic interpreter on the
GPU as well as a transpiler for creating PTX code is outlined. Research is done to ensure
the implementations are relevant and not outdated. Finally, the evaluation results will
answer the research questions and determine if expressions generated at runtime can be
evaluated more efficiently on the GPU than on the CPU.



Chapter 2

Fundamentals and Related Work

The goal of this chapter is to provide an overview of equation learning or symbolic
regression to establish common knowledge of the topic and problem this thesis is trying
to solve. First the field of equation learning is explored which helps to contextualise the
topic of this thesis. The main part of this chapter is split into two sub-parts. The first
part is exploring research that has been done in the field of general purpose computations
on the GPU (GPGPU) as well as the fundamentals of it. Focus lies on exploring how
graphics processing units (GPUs) are used to achieve substantial speed-ups and when
and where they can be effectively employed. The second part describes the basics of
how interpreters and compilers are built and how they can be adapted to the workflow
of programming GPUs. When discussing GPU programming concepts, the terminology
used is that of Nvidia and may differ from that used for AMD GPUs.

2.1 Equation learning
Equation learning is a field of research that can be used for understanding and discover-
ing equations from a set of data from various fields like mathematics and physics. Data
is usually much more abundant while models often are elusive which is demonstrated by
Guillemot (2022) where they explain how validating the models against large amounts
of data is a big part in creating such models. Because of this effort, generating equations
with a computer can more easily lead to discovering equations that describe the observed
data. Brunton et al. (2016) describe an algorithm that leverages equation learning to
discover equations for physical systems. A more literal interpretation of equation learn-
ing is demonstrated by Pfahler and Morik (2020). They use machine learning to learn
the form of equations. Their aim was to simplify the discovery of relevant publications
by the equations they use and not by technical terms, as they may differ by the field of
research. However, this kind of equation learning is not relevant for this thesis.

Symbolic regression is a subset of equation learning, that specialises more towards
discovering mathematical equations. A lot of research is done in this field. Using ge-
netic programming (GP) for different problems, including symbolic regression, was first
described by Koza (1994). He described that finding a computer program to solve a
problem for a given input and output, can be done by traversing the search space of
all solutions. This fits well for the goal of symbolic regression, where a mathematical

4
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expression needs to be found to describe a problem with specific inputs and outputs.
Later, Koza (2010) provided an overview of results that were generated with the help
of GP and were competitive with human solutions, showing how symbolic regression is
a useful tool. In their book Symbolic Regression, Kronberger et al. (2024) show how
symbolic regression can be applied for real world scenarios. They also describe symbolic
regression in great detail, while being tailored towards beginners and experts alike.

Keijzer (2004) and Korns (2011) presented ways of improving the quality of symbolic
regression algorithms, making symbolic regression more feasible for problem-solving.
Bartlett et al. (2024) describe an exhaustive approach for symbolic regression which
can find the true optimum for perfectly optimised parameters while retaining simple
and interpretable results. Alternatives to GP for symbolic regression also exist with
one proposed by Jin et al. (2020). Their approach increased the quality of the results
noticeably compared to GP alternatives. Another alternative to heuristics like GP is
the usage of neural networks. One such alternative has been introduced by Martius and
Lampert (2016) where they used a neural network for their equation learner with mixed
results. Later, an extension has been provided by Sahoo et al. (2018). They introduced
the division operator, which led to much better results. Further improvements have been
described by Werner et al. (2021) with their informed equation learner. By incorporating
domain expert knowledge they could limit the search space and find better solutions for
particular domains. One drawback of these three implementations is the fact that their
neural networks are fixed. An equation learner which can change the network at runtime
and therefore evolve over time is proposed by Dong et al. (2024). Their approach further
improved the results of neural network equation learners. In their work, Lemos et al.
(2022) also used a neural network for symbolic regression. They were able to find an
equivalent to Newton’s law of gravitation and rediscovered Newton’s second and third
law only with trajectory data of bodies of our solar system. Although these laws were
already known, this research has shown how neural networks and machine learning in
general have great potential. An implementation for an equation learner in the physics
domain is proposed by Sun et al. (2023). Their algorithm was specifically designed
for nonlinear dynamics often occurring in physical systems. When compared to other
implementations their equation learner was able to create better results but has the
main drawback of high computational cost. As seen by these publications, increasing the
quality of generated equations and also increasing the speed of finding these equations
is a central part in symbolic regression and equation learning in general.

As described earlier, the goal of equation learning is to find an expression that fits a
given set of data. The data usually consists of a set of inputs that have been applied to
the unknown expression and the output after the input has been applied. An example
for such data is described by Werner et al. (2021). In one instance they want to find the
power loss formula for an electric machine. They used four inputs, direct and quadratic
current as well as temperature and motor speed, and they have an observed output
which is the power loss. Now for an arbitrary problem with different input and outputs,
the equation learner tries to find an expression that fits this data (Koza, 1994). Fitting
in this context means that when the input is applied to the expression, the result will
be the same as the observed output. In order to avoid overfitting Bomarito et al. (2022)
have proposed a way of using Bayesian model selection to combat overfitting and reduce
the complexity of the generated expressions. This also helps with making the expressions
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more generalisable and therefore be applicable to unseen inputs. A survey conducted
by Dabhi and Chaudhary (2012) shows how overfitting is not desirable and why more
generalisable solutions are preferred. To generate an equation, first the operators need to
be defined that make up the equation. It is also possible to define a maximum length for
an expression as proposed by Bartlett et al. (2024). Expressions also consist of constants
as well as variables which represent the inputs. Assuming that a given problem has three
variables, the equation learner could generate an expression as seen in 2.1 where 𝑥𝑛 are
the variables and 𝑂 is the output which should correspond to the observed output for
the given variables.

𝑂 = 5− abs(𝑥1) * sqrt(𝑥2)/10 + 2^𝑥3 (2.1)

A typical equation learner generates multiple expressions at once. If the equation
learner generates 300 expressions and each expression needs to be evaluated 50 times to
get the best parametrisation for each of these expressions, the total number of evalua-
tions is 300 * 50 = 15 000. However, it is likely that multiple runs or generations in the
context of GP need to be performed. The number of generations is dependent to the
problem, but assuming a maximum of 100 generations, the total number of evaluations
is equal to 300 * 50 * 100 = 1 500 000. These values have been taken from the equation
learner for predicting discharge voltage curves of batteries as described by Kronberger
et al. (2024). Their equation learner converged after 54 generations, resulting in eval-
uating 800 000 expressions. Depending on the complexity of the generated expressions,
performing all of these evaluations takes up a lot of the runtime. Their results took over
two days on an eight core desktop CPU. While they did not provide runtime information
for all problems they tested, the voltage curve prediction was the slowest. The other
problems were in the range of a few seconds and up to a day. Especially the problems
that took several hours to days to finish show, that there is still room for performance
improvements. While a better CPU with more cores can be used, it is interesting to de-
termine, if using Graphics cards can yield noticeable better performance or not, which
is the goal of this thesis.

2.2 General Purpose Computation on Graphics Processing Units

Graphics cards (GPUs) are commonly used to increase the performance of many dif-
ferent applications. Originally they were designed to improve performance and visual
quality in games. Dokken et al. (2005) first described the usage of GPUs for general
purpose programming (GPGPU). They have shown how the graphics pipeline can be
used for GPGPU programming. Because this approach also requires the programmer to
understand the graphics terminology, this was not a great solution. Therefore, Nvidia
released CUDA1 in 2007 with the goal of allowing developers to program GPUs indepen-
dent of the graphics pipeline and terminology. A study of the programmability of GPUs
with CUDA and the resulting performance has been conducted by Huang et al. (2008).
They found that GPGPU programming has potential, even for non-embarassingly paral-
lel problems. Research is also done in making the low level CUDA development simpler.
T. D. Han and Abdelrahman (2011) have described a directive-based language to make

1https://developer.nvidia.com/cuda-toolkit

https://developer.nvidia.com/cuda-toolkit
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development simpler and less error-prone, while retaining the performance of handwrit-
ten code. To drastically simplify CUDA development, Besard et al. (2019b) showed
that it is possible to develop with CUDA in the high level programming language Julia2

with similar performance to CUDA written in C. In a subsequent study W.-C. Lin and
McIntosh-Smith (2021) found, that high performance computing (HPC) on the CPU
and GPU in Julia performs similar to HPC development in C. This means that Julia can
be a viable alternative to Fortran, C and C++ in the HPC field. Additional Julia has
the benefit of developer comfort since it is a high level language with modern features
such as a garbage-collector. Besard et al. (2019a) have also shown how the combina-
tion of Julia and CUDA help in rapidly developing HPC software. While this thesis in
general revolves around CUDA, there also exist alternatives by AMD called ROCm3

and a vendor independent alternative called OpenCL4. If not specified otherwise, the
following section and its subsections use the information presented by Nvidia (2025b)
in their CUDA programming guide.

While in the early days of GPGPU programming a lot of research has been done to
assess if this approach is feasible, it now seems obvious to use GPUs to accelerate algo-
rithms. GPUs have been used early to speed up weather simulation models. Michalakes
and Vachharajani (2008) proposed a method for simulating weather with the Weather
Research and Forecast (WRF) model on a GPU. With their approach, they reached a
speed-up of 5 to 2 for the most compute intensive task, with little GPU optimisation
effort. They also found that the GPU usage was low, meaning there are resources and
potential for more detailed simulations. Generally, simulations are great candidates for
using GPUs, as they can benefit heavily from a high degree of parallelism and data
throughput. Köster et al. (2020b) have developed a way of using adaptive time steps
on the GPU to considerably improve the performance of numerical and discrete sim-
ulations. In addition to the performance gains they were able to retain the precision
and constraint correctness of the simulation. Black hole simulations are crucial for sci-
ence and education for a better understanding of our world. Verbraeck and Eisemann
(2021) have shown that simulating complex Kerr (rotating) black holes can be done
on consumer hardware in a few seconds. Schwarzschild black hole simulations can be
performed in real-time with GPUs as described by Hissbach et al. (2022) which is es-
pecially helpful for educational scenarios. While both approaches do not have the same
accuracy as detailed simulations on supercomputers, they show how a single GPU can
yield similar accuracy at a fraction of the cost. Software network routing can also heavily
benefit from GPU acceleration as shown by S. Han et al. (2010), where they achieved a
significantly higher throughput than with a CPU only implementation. Finite element
structural analysis is an essential tool for many branches of engineering and can also
heavily benefit from the usage of GPUs as demonstrated by Georgescu et al. (2013).
Generating test data for DeepQ learning can also significantly benefit from using the
GPU (Köster et al., 2022). However, it also needs to be noted, that GPUs are not always
better performing than CPUs as illustrated by Lee et al. (2010), so it is important to
consider if it is worth using GPUs for specific tasks.

2https://julialang.org/
3https://www.amd.com/de/products/software/rocm.html
4https://www.khronos.org/opencl/

https://julialang.org/
https://www.amd.com/de/products/software/rocm.html
https://www.khronos.org/opencl/
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Figure 2.1: Overview of the architecture of a CPU (left) and a GPU (right). Note the
higher number of simpler and smaller cores on the GPU (Nvidia, 2025b).

2.2.1 Programming GPUs
The development process on a GPU is vastly different from a CPU. A CPU has tens
or hundreds of complex cores with the AMD Epyc 99655 having 192 cores and twice as
many threads. To demonstrate the complexity of a simple one core 8-bit CPU Schuurman
(2013) has written a development guide. He describes the different parts of one CPU
core and how they interact. Modern CPUs are even more complex, with dedicated fast
integer and floating-point arithmetic gates as well as logic gates, sophisticated branch
prediction and much more. This makes a CPU perfect for handling complex control flows
on a single program strand and on modern CPUs even multiple strands simultaneously
(Palacios & Triska, 2011). However, as seen in Section 2.2, this often is not enough.
On the other hand, a GPU contains thousands or even tens of thousands of cores. For
example, the GeForce RTX 50906 contains a total of 21 760 CUDA cores. To achieve
this enormous core count a single GPU core has to be much simpler than one CPU
core. As described by Nvidia (2025b) a GPU designates much more transistors towards
floating-point computations. This results in less efficient integer arithmetic and control
flow handling. There is also less Cache available per core and clock speeds are usually
also much lower than those on a CPU. An overview of the differences of a CPU and a
GPU architecture can be seen in Figure 2.1.

Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice
when considering improving the performance of an algorithm. Because of the high num-
ber of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD
architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states
that there is a single stream of instructions that is executed on a huge number of data

5https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
6https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/

https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html
https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/
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streams. Franchetti et al. (2005) and Tian et al. (2012) describe ways of using SIMD
instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7
respectively by using SIMD instructions instead of serial computations. Extending this
to GPUs which are specifically built for SIMD/data parallel calculations shows why
they are so powerful despite having less complex and slower cores than a CPU. It is also
important to note, that a GPU also always needs a CPU, as the CPU is responsible for
sending the data to the GPU and starting the GPU program. In GPGPU programming,
the CPU is usually called the host, while the GPU is usually called the device.

Thread Hierarchy and Tuning

The thousands of cores on a GPU, also called threads, are grouped together in sev-
eral categories. This is the Thread hierarchy of GPUs. The developer can influence
this grouping to a degree which allows them to tune their algorithm for optimal perfor-
mance. In order to develop a well performing algorithm, it is necessary to know how this
grouping works. Tuning the grouping is unique to each algorithm and also dependent
on the GPU used, which means it is important to test a lot of different configurations
to achieve the best possible result. This section aims at exploring the thread hierarchy
and how it can be tuned to fit an algorithm.

At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is
a hardware unit responsible for scheduling and executing threads and also contains
the registers used by these threads. An SM is always executing a group of 32 threads
simultaneously, and this group is called a warp. The number of threads that can be
started is virtually unlimited. However, threads must be grouped in a block, with one
block typically containing a maximum of 1024 threads but is often configured to be less.
Therefore, if more than 1024 threads are required, more blocks must be created. Blocks
can also be grouped into thread block clusters which is optional, but can be useful in
certain scenarios. All thread blocks or thread block clusters are part of a grid, which
manifests as a dispatch of the code run on the GPU, also called kernel (AMD, 2025b).
All threads in one block have access to some shared memory, which can be used for
L1 caching or communication between threads. It is important that the blocks can be
scheduled independently, with no dependencies between them. This allows the scheduler
to schedule blocks and threads as efficiently as possible. All threads within a warp are
guaranteed to be part of the same block, and are therefore executed simultaneously and
can access the same memory addresses. Figure 2.2 depicts how threads in a block are
grouped into warps for execution and how they shared memory.

A piece of code that is executed on a GPU is written as a kernel which can be
configured. The most important configuration is how threads are grouped into blocks.
The GPU allows the kernel to allocate threads and blocks and block clusters in up to
three dimensions. This is often useful because of the already mentioned shared memory,
which will be explained in more detail in Section 2.2.1. Considering the case where an
image needs to be blurred, it not only simplifies the development if threads are arranged
in a 2D grid, it also helps with optimising memory access. As the threads in a block, need
to access a lot of the same data, this data can be loaded in the shared memory of the
block. This allows the data to be accessed much quicker compared to when threads are
allocated in only one dimension. With one dimensional blocks it is possible that threads
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Figure 2.2: An overview of the thread hierarchy with blocks being split into multiple
warps and their shared memory (AMD, 2025b).

assigned to nearby pixels, are part of a different block, leading to a lot of duplicate
data transfer. The size in each dimension of a block can be almost arbitrary within the
maximum allowed number of threads. However, blocks that are too large might lead to
other problems which are described in more detail in Section 2.2.1.

All threads in a warp start at the same point in a program, but with their own
instruction address, allowing them to work independently. Because of the SIMD archi-
tecture, all threads in a warp must execute the same instructions and if threads start
diverging, the SM must pause threads with different instructions and execute them later.
Figure 2.3 shows how such divergences can impact performance. The situation described
by the figure also shows, that after the divergence the thread could re-converge. On older
hardware this does not happen and leads to T2 being executed after T1 and T3 are
finished. In situations where a lot of data dependent thread divergence happens, most
of the benefits of using a GPU likely have vanished. Threads not executing the same
instruction is strictly speaking against the SIMD principle but can happen in reality,
due to data dependent branching. Consequently, this leads to bad resource utilisation,
which in turn leads to worse performance. Another possibility of threads being paused
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Figure 2.3: Thread T2 wants to execute instruction B while T1 and T3 want to execute
instruction A. Therefore T2 will be an inactive thread this cycle and active once T1 and
T3 are finished. This means that now the divergent threads are serialised.

(inactive threads) is the fact that sometimes, the number of threads started is not di-
visible by 32. In such cases, the last warp still contains 32 threads but only the threads
with work are executed.

Modern GPUs implement the so called Single-Instruction Multiple-Thread (SIMT)
architecture. In many cases a developer does not need to know the details of SIMT
and can develop fast and correct programs with just the SIMD architecture in mind.
However, leveraging the power of SIMT can yield substantial performance gains by re-
converging threads after data dependent divergence occurred. A stack-less re-convergence
algorithm was proposed by Collange (2011) as an alternative to the default stack-based
re-convergence algorithm. Their algorithm was able to achieve higher performance than
the default one. Another approach for increasing occupancy using the SIMT architecture
is proposed by Fung and Aamodt (2011). They introduced a technique for compacting
thread blocks by moving divergent threads to new warps until they re-converge. This ap-
proach resulted in a noticeable speed-up between 17% and 22%. Another example where
a SIMT aware algorithm can perform better was proposed by Köster et al. (2020a).
While they did not implement techniques for thread re-convergence, they implemented
a thread compaction algorithm. On data-dependent divergence it is possible for threads
to end early, leaving a warp with only partial active threads. This means the inactive
threads are still occupied and cannot be used for other work. Their thread compaction
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tackles this problem by moving active threads into a new thread block, releasing the
inactive threads to perform other work. With this they were able to gain a speed-up of
roughly 4 times compared to previous implementations. Adapting Multiple-Instruction
Multiple-Data (MIMD) programs with synchronisation to run on SIMT architecture can
be a difficult task, especially if the underlying architecture is not well understood. A
static analysis tool and a transformer specifically designed to help avoid deadlocks with
MIMD synchronisation is proposed by ElTantawy and Aamodt (2016). In addition, they
proposed a hardware re-convergence mechanism that supports MIMD synchronisation.
A survey by Khairy et al. (2019) explores different aspects of improving GPGPU per-
formance architecturally. Specifically, they have compiled a list of different publications
discussing algorithms for thread re-convergence, thread compaction and much more.
Their main goal was to give a broad overview of many ways to improve the performance
of GPGPU programming to help other developers.

Memory Model

On a GPU there are two parts that contribute to the performance of an algorithm. The
one already looked at is the compute-portion of the GPU. This is necessary because if
threads are serialised or run inefficiently, there is nothing that can make the algorithm
execute faster. However, algorithms run on a GPU usually require huge amounts of
data to be processed, as they are designed for exactly that purpose. The purpose of this
section is to explain how the memory model of the GPU works and how it can influence
the performance of an algorithm. In Figure 2.4 the memory layout and the kinds of
memory available are depicted. The different parts will be explained in this section.

On a GPU there are multiple levels and kinds of memory available. All these levels
and kinds have different purposes they are optimised for. This means that it is important
to know what they are and how they can be best used for specific tasks. On the lowest
level threads have registers and local memory available. Registers is the fastest way to
access memory but is also the least abundant memory with up to a maximum of 255
32-Bit registers per thread on Nvidia GPUs and 256 on AMD GPUs (AMD, 2025a).
However, using all registers of a thread can lead to other problems which are described in
more detail in Section 2.2.1. On the other side, the thread local memory is significantly
slower than registers. This is due to the fact, that local memory is actually stored in
global memory and therefore has the same limitations which are explained later. This
means it is important to try and avoid local memory as much as possible. Local memory
is usually only used when a thread uses too many registers. The compiler will then spill
the remaining data into local memory and loads it into registers once needed, drastically
slowing down the application.

Shared memory is the next tier of memory on a GPU. Unlike local memory and
registers, shared memory is shared between all threads inside a block. The amount of
shared memory is depending on the GPU architecture but for Nvidia it hovers at around
100 Kilobyte (KB) per block. While this memory is slower than registers, its primary
use-case is communicating and sharing data between threads in a block. If all threads in
a block access a lot of overlapping data this data can be loaded from global memory into
faster shared memory once. It can then be accessed multiple times, further increasing
performance. Loading data into shared memory and accessing that data has to be done
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Figure 2.4: The layout of the memory in the GPU. The connections between the memory
regions can be seen as well as the different kinds of memory available.

manually. Because shared memory is part of the unified data cache, it can either be used
as a cache or for manual use, meaning a developer can allocate more shared memory
towards caching if needed. Another feature of shared memory are the so-called memory
banks. Shared memory is always split into 32 equally sized memory modules also called
memory banks. All available memory addresses lie in one of these banks. This means if
two threads access two memory addresses which lie in different banks, the access can
be performed simultaneously, increasing the throughput.

The most abundant and slowest memory is the global memory and resides in device
memory. A key constraint of device memory and therefore global memory is, that can
only be accessed in either 32, 64 or 128 byte chunks. This means if a thread wants
to access 8 bytes from global memory, alongside the 8 bytes, the 24 bytes after the
requested 8 bytes are also transferred. As a result, the throughput is only a fourth of
the theoretical maximum. Therefore, it is important to follow optimal access patterns.
What these optimal patterns are, are architecture dependent and are described in the
according sections in the CUDA programming guide.

A small portion of device memory is allocated to constant memory. Constant memory
is accessible by all threads and as the name implies, can not be written to by threads.
It can be initialised by the CPU when starting a kernel if needed. As constant memory
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Compute Capability 8.9 10.x
Max. number of threads per block 1 024
Warp size 32 threads
Max. number of warps per SM 48 64
Max. number of blocks per SM 24 32
Max. number of threads per SM 1 536 2 048
Number of 32-bit registers per SM 64 000
Max. number of 32-bit registers per block 64 000
Max. number of 32-bit registers per thread 255
Max. amount of shared memory per SM 100 Kilobytes 228 Kilobytes
Max. amount of shared memory per block 99 Kilobytes 227 Kilobytes

Table 2.1: A simplified version of the technical specifications for the Compute Capa-
bilities 8.9 and 10.x (Nvidia, 2025b). These correspond to the Nvidia Ada Lovelace and
Blackwell microarchitectures.

has a separate cache, it can be used to speed-up data access for constant and frequently
accessed data.

Another special kind of memory is the texture and surface memory. According to
AMD (2025b) texture memory is read-only memory, while surface memory can also be
written to, which is the only difference between these two kinds of memory. Nvidia does
not explicitly state this behaviour, but due to the fact that accessing textures is only
performed via caches, it is implied that on Nvidia GPUs, texture memory is also read-
only. As the name implies, this kind of memory is optimised for accessing textures. This
means that threads of the same warp, accessing data which is spatially close together,
will result in increased performance. As already mentioned, surface memory works the
same way, with the difference, that it can be written to. It is therefore well suited for
manipulating two- or three-dimensional data.

Occupancy

Occupancy describes the utilisation of a GPU. A high occupancy means, that there are
Warps executing, or in other words, the cores are occupied with work. This is impor-
tant, as a low occupancy means that the GPU is waiting for work to be scheduled and is
therefore idle. As a result, it is desired to achieve high occupancy in order to increase the
performance of an algorithm. It needs to be noted, that occupancy is not the only op-
tion for improving performance. As it is possible for the GPU to have a high occupancy
while performing a lot of unnecessary or redundant work or utilising compute-resources
that are slower. An example for the latter would be developing an algorithm that uses
64-bit floating point (FP64) numbers while 32-bit floating point (FP32) numbers would
have sufficient accuracy. Because GPUs tend to have fewer FP64 compute-resources
than they have FP32 compute-resources, performing FP64 operations will take longer.
However, despite these drawbacks, having low occupancy will very likely result in per-
formance degradation while high occupancy will either improve performance or do no
harm otherwise. Ways of achieving high occupancy will be outlined in this section as
most other performance problems can be solved algorithmically.
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When starting a kernel, the most important configuration is the number of threads
and thread blocks that need to be started. This is important, as this has other effects
on occupancy as well. In table 2.1 the most notable limitations are presented that
can affect occupancy. These limitations need to be considered when choosing a kernel
configuration. It is important to note, that depending on the GPU and problem, the
occupancy tuning might differ, and the same approach might perform well on one GPU
but perform poorly on another GPU. Therefore, the things discussed here are only
guidelines. Tools like Nvidia Nsight Compute7 and Nsight Systems8 are essential for
performance tuning. Nsight compute also contains an occupancy calculator which takes
a kernel and computes how the configuration performs in terms of occupancy and also
lets the developer try out different configurations (Nvidia, 2025c).

In general, it is important to have as many warps as possible ready for execution.
While this means that a lot of warps could be executed but are not, this is actually
desired. A key feature of GPUs is so-called latency hiding, meaning that while a warp
waits for data to be retrieved for example, another warp ready for execution can now be
run. With low occupancy, and therefore little to no warps waiting for execution, latency
hiding does not work, as now the hardware is idle. As a result, the runtime increases
which also explains why high occupancy is not guaranteed to result in performance
improvements while low occupancy can and often will increase the runtime.

As seen in table 2.1, there exist different limitations that can impact occupancy. The
number of warps per SM is important, as this means this is the degree of parallelism
achievable per SM. If due to other limitations, the number of warps per SM is below
the maximum, there is idle hardware. One such limitation is the number of registers per
block and SM. In the case of compute capability 8.9, one SM can handle 32*48 = 1 536
threads. This leaves 64 000/1 536 ≈ 41 registers per thread, which is lower than the
theoretical maximum of 255 registers per thread. Typically, one register is mapped to
one variable in the kernel code, meaning a developer can use up to 41 variables in their
code. However, if the variable needs 64 bits to store its value, the register usage doubles,
as all registers on a GPU are 32-bit. On a GPU with compute capability 10.x a developer
can use up to 64 000/2 048 ≈ 31 registers. Of course a developer can use more registers,
but this results in less occupancy. However, depending on the algorithm using more
registers might be more beneficial to performance than the lower occupancy, in which
case occupancy is not as important. If a developer needs more than 255 registers for
their variables the additional variables will spill into local memory which is, as described
in Section 2.2.1, not desirable.

Additionally, shared memory consumption can also impact the occupancy. If for
example a block needs all the available shared memory, which is almost the same as
the amount of shared memory per SM, this SM can only serve this block. On compute
capability 10.x, this would mean that occupancy would be at maximum 50% as a block
can have up to 1 024 threads while an SM supports up to 2 048 threads. Again, in such
cases it needs to be determined, if the performance gain of using this much shared
memory is worth the lower occupancy.

Balancing these limitations and therefore the occupancy and performance often re-
quires a lot of trial and error with help of the aforementioned tools. In cases where

7https://developer.nvidia.com/nsight-compute
8https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
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occupancy is already high and the amount of warps ready for execution is also high,
other areas for performance improvements need to be explored. Algorithmic optimisa-
tion is always a good idea. Some performance improvements can be achieved by altering
the computations to use different parts of the GPU. One of such optimisations is using
FP32 operations wherever possible. Another well suited optimisation is to rewrite the
algorithm to use as many Fused Multiply-Add (FMA) instructions. FMA is a special
floating point instruction, that multiplies two values and adds a third, all in a single
clock cycle (Nvidia, 2025a). However, the result might slightly deviate compared to per-
forming these two operations separately, which means in accuracy sensitive scenarios,
this instruction should be avoided. If the compiler detects a floating point operation
with the FMA structure, it will automatically be compiled to an FMA instruction. To
prevent this, in C++ the developer can call the functions __fadd_ and __fmul_ for
addition and multiplication respectively.

2.2.2 Parallel Thread Execution
While in most cases a GPU can be programmed in a higher level language like C++
or even Julia9, it is also possible to program GPUs with the low level language Parallel
Thread Execution (PTX) developed by Nvidia. A brief overview of what PTX is and
how it can be used to program GPUs is given in this section. Information in this section
is taken from the PTX documentation (Nvidia, 2025d) if not stated otherwise.

PTX defines a virtual machine with an own instruction set architecture (ISA) and
is designed for data-parallel processing on a GPU. It is an abstraction of the underlying
hardware instruction set, allowing PTX code to be portable across Nvidia GPUs. In
order for PTX code to be usable for the GPU, the driver is responsible for compiling
the code to the hardware instruction set of the GPU it is run on. A developer typically
writes a kernel in CUDA using C++, for example, and the Nvidia compiler generates
the PTX code for that kernel. This PTX code is then compiled by the driver once it
is executed. The concepts for programming the GPU with PTX and CUDA are the
same, apart from the terminology which is slightly different. For consistency, the CUDA
terminology will continue to be used.

Syntactically PTX resembles Assembly style code. Every PTX code must have a
.version directive which indicates the PTX version and an optional .target directive
which indicates the compute capability. If the program works in 64 bit addresses, the
optional .address_size directive can be used to indicate that, which simplifies the
code for such applications. After these directives, the actual code is written. As each
PTX code needs an entry point (the kernel) the .entry directive indicates the name
of the kernel and the parameters needed. It is also possible to write helper functions
with the .func directive. Inside the kernel or a helper function, normal PTX code can
be written. Because PTX is very low level, it assumes an underlying register machine,
therefore a developer needs to think about register management. This includes loading
data from global or shared memory into registers if needed. Code for manipulating
data like addition and subtraction generally follow the structure operation.datatype
followed by up to four parameters for that operation. For adding two FP32 values
together and storing them in the register %n, the code looks like the following:

9https://juliagpu.org/

https://juliagpu.org/
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1 .func loop(.param .u32 N)
2 {
3 .reg .u32 \%n;
4 .reg .pred \%p;
5
6 ld.param.u32 \%n, [N];
7 Loop:
8 setp.eq.u32 \%p, \%n, 0;
9 @\%p bra Done;

10 sub.u32 \%n, \%n, 1;
11 bra Loop;
12 Done:
13 }

Program 2.1: A PTX program fragment depicting how loops can be implemented.

add.f32 \%n, 0.1, 0.2;

Loops in the classical sense do not exist in PTX. Alternatively a developer needs to
define jump targets for the beginning and end of the loop. The Program in 2.1 shows
how a function with simple loop can be implemented. The loop counts down to zero
from the passed parameter 𝑁 which is loaded into the register %n in line 6. If the value
in the register %n reached zero the loop branches at line 9 to the jump target at line 12
and the loop has finished. All other used directives and further information on writing
PTX code can be taken from the PTX documentation (Nvidia, 2025d).

2.3 Compilers
Compilers are a necessary tool for many developers. If a developer wants to run their
program it is very likely they need one. As best described by Aho et al. (2006) in their
dragon book, a compiler takes code written by a human in some source language and
translates it into a destination language readable by a computer. This section briefly
explores what compilers are and research done in this old field of computer science.
Furthermore, the topics of transpilers and interpreters are explored, as their use-cases
are very similar.

Aho et al. (2006) and Cooper and Torczon (2022) describe how a compiler can be
developed, with the latter focusing on more modern approaches. They describe how a
compiler consists of two parts, the analyser, also called frontend, and the synthesiser
also called backend. The front end is responsible for ensuring syntactic and semantic
correctness and converts the source code into an intermediate representation, an abstract
syntax tree (AST), for the backend. Generating code in the target language, from the
intermediate representation is the job of the backend. This target code can be assembly
or anything else that is needed for a specific use-case. This intermediate representation
also makes it simple to swap out frontends or backends. The Gnu Compiler Collection
GCC (2025) takes advantage of using different frontends to provide support for many
languages including C, C++, Ada and more. Instead of compiling source code for specific
machines directly, many languages compile code for virtual machines instead. Notable
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examples are the Java Virtual Machine (JVM) (Lindholm et al., 2025) and the low
level virtual machine (LLVM) (Lattner & Adve, 2004). Such virtual machines provide
a bytecode which can be used as a target language for compilers. A huge benefit of
such virtual machines is the ability for one program to be run on all physical machines
the virtual machine exists for, without the developer needing to change that program
(Lindholm et al., 2025). Programs written for virtual machines are compiled into their
respective bytecode. This bytecode can then be interpreted or compiled to physical
machine code and then be run. According to the JVM specification Lindholm et al.
(2025) the Java bytecode is interpreted and also compiled with a just-in-time (JIT)
compiler to increase the performance of code blocks that are often executed. On the
other hand, the common language runtime (CLR)10, the virtual machine for languages
like C#, never interprets the generated bytecode. As described by Microsoft (2023) the
CLR always compiles the bytecode to physical machine code using a JIT compiler before
it is executed.

A grammar describes how a language is structured. It not only describes the struc-
ture of natural language, but it can also be used to describe the structure of a pro-
gramming language. Chomsky (1959) found that grammars can be grouped into four
levels, with regular and context-free grammars being the most relevant for programming
languages. A regular grammar is of the structure 𝐴 = 𝑎 | 𝑎 𝐵 which is called a rule. The
symbols 𝐴 and 𝐵 are non-terminal symbols and 𝑎 is a terminal symbol. A non-terminal
symbol stands for another rule with the same structure and must only occur after a ter-
minal symbol. Terminal symbols are fixed symbols or a value that can be found in the
input stream, like literals in programming languages. Context-free grammars are more
complex and are of the structure 𝐴 = 𝛽. In this context 𝛽 stands for any combination of
terminal and non-terminal symbols. Therefore, a rule like 𝐴 = 𝑎 |𝑎 𝐵 𝑎 is allowed with
this grammar level. This shows that with context-free grammars enclosing structures
are possible. To write grammars for programming languages, other properties are also
important to efficiently validate or parse some input to be defined by this grammar.
However, these are not discussed here, but are described by Aho et al. (2006). They
also described that generating a parser out of a grammar can be automated. This au-
tomation can be performed by parser generators like Yacc (Johnson, 1975) as described
in their book. More modern alternatives are Bison11 or Antlr12. Before the parser can
validate the input stream, a scanner is needed as described by Cooper and Torczon
(2022). The scanner reads every character of the input stream and is responsible for
removing white-spaces and ensures only valid characters and words are present. Flex 13

is a tool that allows generating a scanner and is often used in combination with Bison.
A simplified version of the compiler architecture using Flex and Bison is depicted in
Figure 2.5. It shows how source code is taken and transformed into the intermediate
representation by the frontend, and how it is converted into executable machine code
by the backend.

10https://learn.microsoft.com/en-us/dotnet/standard/clr
11https://www.gnu.org/software/bison/
12https://www.antlr.org/
13https://github.com/westes/flex

https://learn.microsoft.com/en-us/dotnet/standard/clr
https://www.gnu.org/software/bison/
https://www.antlr.org/
https://github.com/westes/flex
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Figure 2.5: A simplified overview of how the architecture of a compiler looks, using Flex
and Bison.

2.3.1 Transpilers
With the concepts already mentioned, it is possible to generate executable code from
code written in a programming language. However, sometimes it is desired to convert
a program from one programming language to another and therefore the major differ-
ence between these use-cases is the backend. A popular transpiler example is TypeScript,
which transforms TypeScript source code into JavaScript source code (Microsoft, 2025).
Other examples for transpilers are the C2Rust transpiler (Ling et al., 2022) that tran-
spiles C code into Rust code as well as the PyJL transpiler (Marcelino & Leitão, 2022)
which transpiles Python code into Julia code. Chaber and Ławryńczuk (2016) proposed
a transpiler that takes MATLAB and C code and transforms it into pure and optimised
C code for an STM32 microcontroller. An early example for a transpiler has been de-
veloped by Intel (1978) where they built a transpiler for transforming assembly code
for their 8080 CPU to assembly code for their 8086 CPU. Transpilers can also be used
in parallelisation environments, like OpenMP (C.-K. Wang & Chen, 2015). There also
exists a transpiler that transforms CUDA code into highly parallel CPU code. Moses
et al. (2023) described this transpiler, and they found that the generated code performs
noticeably better than doing this transformation by hand. When designing complex pro-
cessors and accelerators, Register-transfer level (RTL) simulations are essential (L.-T.
Wang et al., 2009). In a later study Zhang et al. (2020) have shown how RTL simulations
can be performed on GPUs with a speed-up of 20. This led to D.-L. Lin et al. (2023)
developing a transpiler to transform RTL into CUDA kernels instead of handwriting
them. The compared their results with a CPU implementation running on 80 CPUs,
where they found that the transpiled CUDA version was 40 times faster. Using tran-
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spilers for software backend and business logic has been proposed by Bastidas Fuertes
et al. (2023a). Their approach implemented a programming language that can be tran-
spiled into different programming languages, for usage in a multi-programming-language
environment that share some business logic. In another study, Bastidas Fuertes et al.
(2023b) reviewed over 600 publications to map the use of transpilers alongside their im-
plementations in different fields of research, demonstrating the versatility of transpiler
use.

2.3.2 Interpreters
Interpreters are a different kind of program for executing source code. Rather than com-
piling the code and executing the result, an interpreter executes the source code directly.
Languages like Python and JavaScript are prominent examples of interpreted languages,
but also Java, or more precise Java-Bytecode, is also interpreted before it gets compiled
(Lindholm et al., 2025). However, interpreters can not only be used for interpreting pro-
gramming languages. It is also possible for them to be used in GP. Langdon and Banzhaf
(2008) have shown how a SIMD interpreter can be efficiently used for evaluating entire
GP populations on the GPU directly. In a later work Cano and Ventura (2014) further
improved this interpreter. They used the fact that a GP individual represents a tree
which can be split into independent subtrees. These can be evaluated concurrently and
with the help of communication via shared memory, they were able to evaluate the en-
tire tree. With this they achieved a significant performance improvement over previous
implementations. As shown by Dietz and Young (2010), it is even possible to develop
an interpreter that can execute MIMD programs on a SIMD GPU. However, as noted
by the authors, any kind interpretation comes with an overhead. This means that with
the additional challenges of executing MIMD programs on SIMD hardware, their in-
terpreter, while achieving reasonable efficiency, still suffers from performance problems.
Another field where interpreters can be useful are rule-based simulations. Köster et al.
(2020a) has shown how they implemented a GPU interpreter for such simulations. In
addition with other novel performance improvements in running programs on a GPU,
they were able to gain a speed-up of 4 over non-interpreted implementations. While
publications like Fua and Lis (2020) and Gherardi et al. (2012) have shown, interpreted
languages often trail behind in terms of performance compared to compiled languages,
interpreters per se are not slow. And while they come with performance overhead as
demonstrated by Dietz and Young (2010) and Romer et al. (1996), they can still be a
very fast, easy and powerful alternative for certain tasks.



Chapter 3

Concept and Design

To be able to determine whether evaluating mathematical expressions on the GPU is
better suited than on the CPU, a prototype needs to be implemented. More specifically,
a prototype for interpreting these expressions on the GPU, as well as a prototype that
transpiles expressions into code that can be executed by the GPU. The goal of this
chapter, is to describe how these two prototypes can be implemented conceptually. First
the requirements for the prototypes as well as the data they operate on are explained.
This is followed by the design of the interpreter and the transpiler. The CPU interpreter
will not be described, as it already exists.

3.1 Requirements and Data
The main goal of both prototypes or evaluators is to provide a speed-up compared to
the CPU interpreter already in use. However, it is also important to determine which
evaluator provides the most speed-up. This also means that if one of the evaluators is
faster, it is intended to replace the CPU interpreter. Therefore, they must have similar
capabilities, and therefore meet the following requirements:

• Multiple expressions as input.
• All input expressions have the same number of variables (𝑥𝑛), but can have a

different number of parameters (𝑝𝑛).
• The variables are parametrised using a matrix of the form 𝑘 ×𝑁 , where 𝑘 is the

number of variables in the expressions and 𝑁 is the number of different parametri-
sations for the variables. This matrix is the same for all expressions.

• The parameters are parametrised using a vector of vectors. Each vector 𝑣𝑖 corre-
sponds to an expression 𝑒𝑖.

• The following operations must be supported: 𝑥+𝑦, 𝑥−𝑦, 𝑥*𝑦, 𝑥/𝑦, 𝑥𝑦, |𝑥|, log(𝑥),
𝑒𝑥 and

√
𝑥. Note that 𝑥 and 𝑦 can either stand for a value, a variable, or another

operation.
• The results of the evaluations are returned in a matrix of the form 𝑘×𝑁 . In this

case, 𝑘 is equal to the 𝑁 of the variable matrix and 𝑁 is equal to the number of
input expressions.

With this, the required capabilities are outlined. However, the input and output

21
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Figure 3.1: This diagram shows how the input and output looks like and how they
interact with each other.

data need to further be explained for a better understanding. The first input contains
the expressions that need to be evaluated. These can have any length and can contain
constant values, variables and parameters and all of these are linked together with the
supported operations. In the example shown in Figure 3.1, there are six expressions 𝑒1
through 𝑒6. Next is the variable matrix. One entry in this matrix, corresponds to one
variable in every expression. The row indicates which variable it holds the value for. For
example the values in row three, are used to parametrise the variable 𝑥3. Each column
holds a different set of variables. Each expression must be evaluated using every variable
set. In the provided example, there are three variable sets, each holding the values for
four variables 𝑥1 through 𝑥4. After all expressions are evaluated using all variable sets
the results of these evaluations must be stored in the results matrix. Each entry in
this matrix holds the resulting value of the evaluation of one expression parametrised
with one variable set. The row indicates the variable set while the column indicates the
expression.

This is the minimal functionality needed to evaluate expressions with variables gen-
erated by a symbolic regression algorithm. In the case of parameter optimisation, it is
useful to have a different type of variable, called parameter. For parameter optimisation
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Figure 3.2: The interpreter has one kernel that is dispatched multiple times, while the
transpiler, has multiple kernels that are dispatched once. This helps to eliminate thread
divergence.

it is important that for the given variable sets, the best fitting parameters need to be
found. To achieve this, the evaluator is called multiple times with different parameters,
but the same variables. The results are then evaluated for their fitness by the caller. In
this case, the parameters do not change within one call. Parameters could therefore be
treated as constant values of the expressions, and no separate input for them would be
needed. However, providing the possibility to have the parameters as an input, makes
the process of parameter optimisation easier. Unlike variables, not all expressions need
to have the same number of parameters. Therefore, they are structured as a vector of
vectors and not a matrix. The example in Figure 3.1 shows how the parameters are
structured. For example one expression has zero parameters, while another has six pa-
rameters 𝑝1 through 𝑝6. It needs to be mentioned that just like the number of variables,
the number of parameters per expression is not limited. It is also possible to completely
omit the parameters if they are not needed. Because these evaluators will primarily be
used in parameter optimisation use-cases, allowing parameters as an input is required.

3.2 Architecture
Based on the requirements above, the architecture of both prototypes can be designed.
While the requirements only specify the input and output, the components and workflow
also need to be specified. This section aims at giving an architectural overview of both
prototypes, alongside their design decisions.

A design decision that has been made for both prototypes is to split the evaluation
of each expression into a separate kernel or kernel dispatch as seen in Figure 3.2. As
explained in Section 2.2.1, it is desirable to reduce the occurrence of thread divergence as
much as possible. Although the SIMT programming model tries to mitigate the negative
effects of thread divergence, it is still a good idea to avoid it when possible. For this
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Figure 3.3: This diagram shows how an expression will be transformed in the pre-
processing step.

use-case, thread divergence can easily be avoided by not evaluating all expressions in
a single kernel or kernel dispatch. GPUs are able to have multiple resident grids, with
modern GPUs being able to accommodate 128 grids concurrently (Nvidia, 2025b). One
grid corresponds to one kernel dispatch, and therefore allows up-to 128 kernels to be
run concurrently. Therefore, dispatching a kernel for each expression, has the possibility
to improve the performance. In the case of the interpreter, having only one kernel that
can be dispatched for each expression, also simplifies the kernel itself. This is because
the kernel can focus on evaluating one expression and does not require additional code
to handle multiple expressions at once. Similarly, the transpiler can also be simplified,
as it can generate many smaller kernels than one big kernel. Additionally, the smaller
kernels do not need any branching, because the generated code only needs to perform
the operations as they occur in the expression itself.

3.2.1 Pre-Processing
The first step in both prototypes is the pre-processing step. It is needed, as it simplifies
working with the expressions in the later steps. One of the responsibilities of the pre-
processor is to verify that only allowed operators and symbols are present in the given
expressions. This is comparable to the work a scanner like Flex1 performs. Additionally,
this step also converts the expression into an intermediate representation. In essence,
the pre-processing step can be compared to the front-end of a compiler as described
in Section 2.3. The conversion into the intermediate representation transforms the ex-
pressions from infix-notation into postfix-notation. This further allows the later parts
to more easily evaluate the expressions. One of the major benefits of this notation is
the implicit operator precedence. It allows the evaluators to evaluate the expressions
token by token from left to right, without needing to worry about the correct order
of operations. One token represents either an operator, a constant value, a variable or
a parameter. Apart from the intermediate representation containing the expression in
postfix-notation, it also contains the information about the types of the tokens them-
selves. This is all that is needed for the interpretation and transpilation steps. A simple
expression like 𝑥 + 2 would look like depicted in figure 3.3 after the pre-processing step.

It would have also been possible to perform the pre-processing step on the GPU.
However, pre-processing only one expression can not easily be split into multiple threads,
which means one GPU thread would need to process one expression. As described in

1https://github.com/westes/flex

https://github.com/westes/flex
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Figure 3.4: This diagram depicts the coarse-grained workflow of the interpreter. It shows
how the parts interact with each other and with the system it will operate in.

Section 2.2 a single GPU thread is slower than a single CPU thread and as a result
means the processing will also be slower. Furthermore, it wouldn’t make sense to pro-
cess all expressions in a single kernel. This would lead to a lot of thread divergence,
which essentially means processing one expression after the other. The SIMT program-
ming model might help with parallelising at least some parts of the processing work.
However, the generated expressions can differ a lot from each other and restricting them
to be similar and therefore SIMT friendly, would likely reduce the overall quality of the
symbolic regression algorithm. Therefore, it does not make sense to perform the pro-
cessing step on the GPU. This is a typical example of code that is better run on the
CPU, also because the parallelisation possibilities of one thread per expression can be
applied to the CPU as well. Concepts like caching processed expressions, or caching
parts of the processed expressions can also be employed on the CPU. This would not be
possible on the GPU, because a GPU can not save state between two kernel dispatches.

3.2.2 Interpreter
The interpreter consists of two parts. The CPU side is the part of the program, that
interacts with both the GPU and the caller. An overview on the components and the
workflow of the interpreter can be seen in Figure 3.4. Once the interpreter receives the
expressions, they are pre-processed. This ensures the expressions are valid, and that
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they are transformed into the intermediate representation needed for evaluating them.
The results of this pre-processing are then sent to the GPU, which performs the actual
interpretation of the expressions. Alongside the expressions, the data for the variables
and parameters also needs to be sent to the GPU. Once all the data resides on the
GPU, the interpreter kernel can be dispatched. It needs to be noted, that for each of
the expressions, a separate kernel will be dispatched. As already described, this decision
has been made to reduce thread divergence and therefore increase performance. In fact,
dispatching the same kernel multiple times with different expressions, means, there
will not occur any thread divergence as explained later. Once the GPU has finished
evaluating all expressions with all variable sets, the result will be stored in a matrix
on the GPU. The CPU then retrieves the results and returns them to the caller in the
format specified by the requirements.

Evaluating the expressions is relatively straight forward. Due to the expressions
being in postfix-notation, the actual interpreter must only iterate over all tokens once
and perform the appropriate tasks. If the interpreter encounters a binary operator,
it must simply read the previous two values and perform the operation specified by
the operator. For unary operators, only the previous value must be read. As already
mentioned, expressions in postfix-notation implicitly contain the operator precedence,
therefore no look-ahead or other strategies need to be used to ensure correct evaluation.
The Algorithm 3.1 shows how the interpreter works. Note that this is a simplified version,
that only works with additions, multiplications, constant values and variables.

Algorithm 3.1: Interpreting an equation in postfix-notation
1: procedure Evaluate(expr : PostfixExpression)
2: stack← []
3: while HasTokenLeft(expr) do
4: token← GetNextToken(expr)
5: if token.Type = Constant then
6: Push(stack, token.Value)
7: else if token.Type = Variable then
8: Push(stack, GetVariable(token.Value))
9: else if token.Type = Operator then

10: if token.Value = Addition then
11: right← Pop(stack)
12: left← Pop(stack)
13: Push(stack, left + right)
14: else if token.Value = Multiplication then
15: right← Pop(stack)
16: left← Pop(stack)
17: Push(stack, left * right)

return Pop(stack)

If a new operator is needed, it must simply be added as another else-if block inside
the operator branch. New token types like variables or parameters, can also be added
by adding a new outer else-if block that checks for these token types. However, the pre-
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Figure 3.5: This diagram depicts the coarse-grained workflow of the transpiler. It shows
how the parts interact with each other and with the system it will operate in.

processing step also needs to be extended with these new operators and token types.
Otherwise, the expression will never reach the evaluation step as they would be seen as
invalid. It is also possible to add unary operators like log(). In this case only one value
would be read from the stack, the operation would be applied, and the result would be
written back to the stack.

The Algorithm 3.1 in this case resembles the kernel. This kernel will be dispatched
for every expression that needs to be evaluated, to eliminate thread divergence. Thread
divergence can only happen on data dependent branches. In this case, the while loop
and every if and else-if statement contains a data dependent branch. Depending on the
expression passed to the kernel, the while loop may run longer than for another expres-
sion. Similarly, not all expressions have the same constants, operators and variables in
the same order and would therefore lead to each thread, taking different paths. However,
one expression, always has the same constants, operators and variables in the same lo-
cations, meaning all threads will take the same paths. This also means that despite the
interpreter containing many data dependent branches, these branches only depend on
the expression itself. Because of this, all threads will take the same paths and therefore
will never diverge from one another if they execute the same expression.
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3.2.3 Transpiler
Similar to the interpreter, the transpiler also consists of a part that runs on the CPU
and a part that runs on the GPU. When looking at the components and workflow of
the transpiler, as shown in Figure 3.5, it is almost identical to the interpreter. However,
the key difference between the two, is the additional code generation, or transpilation
step. Apart from that, the transpiler also needs the same pre-processing step and also
the GPU to evaluate the expressions. However, the GPU evaluator generated by the
transpiler works differently to the GPU evaluator for the interpreter. The difference
between these evaluators will be explained later.

Before the expressions can be transpiled into PTX code, they need to be pre-
processed. As already described, this step ensures the validity of the expressions and
transforms them into the intermediate representation described above. As with the in-
terpreter, this also simplifies the code generation step at the cost of some performance
because the validity has to be ensured, and the intermediate representation needs to
be generated. However, in this case the benefit of having a simple code generation step
was more important than performance. By transforming the expressions into postfix-
notation, the code generation follows a similar pattern to the interpretation already
described. Algorithm 3.2 shows how the transpiler takes an expression, transpiles it and
then returns the finished code. It can be seen that the while loop is the same as the
while loop of the interpreter. The main difference is in the operator branches. Because
now code needs to be generated, the branches themselves call their designated code gen-
eration function, such as GetAddition. However, this function can not only return the
code that performs the addition for example. When executed, this addition also returns
a value which will be needed as an input by other operators. Therefore, not only the
code fragment must be returned, but also the reference to the result. This reference can
then be put on the stack for later use the same as the interpreter stores the value for
later use. The code fragment must also be added to the already generated code so that
it can be returned to the caller. As with the interpreter, there is a final value on the
stack when the loop has finished. Once the code is executed, this value is the reference
to the result of the expression. This value then needs to be stored in the results matrix,
so that it can be retrieved by the CPU after all expressions have been executed on the
GPU. Therefore, one last code fragment must be generated to handle the storage of
this value in the results matrix. This fragment must then be added to the code already
generated, and the transpilation process is completed.

The code generated by the transpiler is the kernel for the transpiled expressions.
This means that a new kernel must be generated for each expression that needs to be
evaluated. This is in contrast to the interpreter, which has one kernel and dispatches it
once for each expression. However, generating one kernel per expression results in a much
simpler kernel. This allows the kernel to focus on evaluating the postfix expression from
left to right. No overhead work, like branching or managing a stack is needed. However,
this overhead is now offloaded to the transpilation step on the CPU as can be seen in
Algorithm 3.2. There is also a noticeable overhead in that a kernel has to be generated
for each expression. In cases like parameter optimisation, many of the expressions will
be transpiled multiple times as the transpiler is called multiple times with the same
expressions.
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Algorithm 3.2: Transpiling an equation in postfix-notation
1: procedure Transpile(expr : PostfixExpression): String
2: stack← []
3: code← “”
4: while HasTokenLeft(expr) do
5: token← GetNextToken(expr)
6: if token.Type = Constant then
7: Push(stack, token.Value)
8: else if token.Type = Variable then
9: (codeFragment, referenceToValue) ← GetVariable(token.Value)

10: Push(stack, referenceToValue)
11: Append(code, codeFragment)
12: else if token.Type = Operator then
13: if token.Value = Addition then
14: right← Pop(stack)
15: left← Pop(stack)
16: (referenceToValue, codeFragment)← GetAddition(left, right)
17: Push(stack, referenceToValue)
18: Append(code, codeFragment)
19: else if token.Value = Multiplication then
20: right← Pop(stack)
21: left← Pop(stack)
22: (referenceToValue, codeFragment)← GetMultiplication(left, right)
23: Push(stack, referenceToValue)
24: Append(code, codeFragment)
25: codeFragment← GenerateResultStoring(Pop(stack))
26: Append(code, codeFragment)

return code

Both the transpiler and the interpreter have their respective advantages and disad-
vantages. While the interpreter puts less load on the CPU, the GPU has to perform
more work. Much of this work is branching or managing a stack and therefore involves
many instructions that are not used to evaluate the expression itself. However, this
overhead can be mitigated by the fact, that all of this overhead is performed in parallel
and not sequentially.

On the other hand, the transpiler performs more work on the CPU. The kernels
are much simpler, and most of the instructions are used to evaluate the expressions
themselves. Furthermore, as explained in Section 2.2.2, any program running on the
GPU, must be transpiled into PTX code before the driver can compile it into machine
code. Therefore, the kernel written for the interpreter, must also be transpiled into
PTX. This overhead is in addition to the branch instruction overhead. The self-written
transpiler removes this intermediate step by transpiling directly to PTX. In addition,
the generated code is tailored to evaluate expressions and does not need to generate
generic PTX code, which can reduce transpilation time.

Unlike the GPU, the CPU can manage state across multiple calls. Concepts such as
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caches can be employed by the transpiler to reduce the overhead on the CPU. In cases
such as parameter optimisation, where expressions remain the same over multiple calls,
the resulting PTX code can be cached. As a result the same expression doesn’t need to
be transpiled multiple times, drastically reducing the transpilation time and therefore
improving the overall performance of the transpiler.



Chapter 4

Implementation

somewhere in here explain why one kernel per expression and not one kernel for all
expressions

4.1 Technologies
Short section; CUDA, PTX, Julia, CUDA.jl

Probably reference the performance evaluation papers for Julia and CUDA.jl

4.2 Expression Processing

Talk about why this needs to be done and how it is done (the why is basically: simplifies
evaluation/transpilation process; the how is in ExpressionProcessing.jl)

4.3 Interpreter
Talk about how the interpreter has been developed.

UML-Ablaufdiagram
main loop; kernel transpiled by CUDA.jl into PTX and then executed
Memory access (currently global memory only) no dynamic memory allocation like

on CPU (stack needs to have fixed size)

4.4 Transpiler

Talk about how the transpiler has been developed (probably largest section, because it
just has more interesting parts)

UML-Ablaufdiagram
Front-End and Back-End Caching of back-end results
PTX code generated and compiled using CUDA.jl (so basically the driver) and then

executed
Memory access (global memory and register management especially register man-

agement)
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Chapter 5

Evaluation

5.1 Test environment

Explain the hardware used, as well as the actual data (how many expressions, variables
etc.)

5.2 Results

talk about what we will see now (results only for interpreter, then transpiler and then
compared with each other and a CPU interpreter)

5.2.1 Interpreter
Results only for Interpreter (also contains final kernel configuration and probably quick
overview/recap of the implementation used and described in Implementation section)

5.2.2 Performance tuning
Document the process of performance tuning

Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
enabled (especially in kernel)

1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium
and large 2.) Using @inbounds -> noticeable improvement in 2 out of 3

5.2.3 Transpiler
Results only for Transpiler (also contains final kernel configuration and probably quick
overview/recap of the implementation used and described in Implementation section

5.2.4 Performance tuning
Document the process of performance tuning

Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
enabled
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1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium
and large 2.) Using @inbounds -> small improvement only on CPU side code

5.2.5 Comparison
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU
interpreter



Chapter 6

Conclusion and Future Work

Summarise the results

6.1 Future Work
talk about what can be improved

Transpiler: transpile expression directly from Julia AST -> would save time because
no intermediate representation needs to be created (looses step and gains performance,
but also makes transpiler itself more complex)
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