module Interpreter using CUDA using ..ExpressionProcessing export interpret "Interprets the given expressions with the values provided. # Arguments - expressions::Vector{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form - variables::Matrix{Float64} : The variables to use. Each column is mapped to the variables x1..xn - parameters::Vector{Vector{Float64}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression " function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float64}, parameters::Vector{Vector{Float64}}) # TODO: # create CUDA array for calculation results variableRows = size(variables, 1) cudaVars = CuArray(variables) cudaParams = create_cuda_array(parameters, NaN64) cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters)]) # put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel # Start kernel for each expression to ensure that no warp is working on different expressions for i in eachindex(expressions) kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaStepsize, i) config = launch_configuration(kernel.fun) threads = min(variableRows, config.threads) blocks = cld(variableRows, threads) kernel(cudaExprs, cudaVars, cudaParams, cudaStepsize, i; threads, blocks) end end function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float64}, parameters::CuDeviceArray{Float64}, stepsize::CuDeviceArray{Int}, exprIndex::Int) firstExprIndex = (exprIndex - 1 * stepsize[1]) + 1 # Inclusive lastExprIndex = firstExprIndex + stepsize[1] # Exclusive firstParamIndex = (exprIndex - 1 * stepsize[2]) + 1 # Inclusive # lastParamIndex = firstParamIndex + stepsize[2] # Exclusive (probably not needed) for i in firstExprIndex:lastExprIndex # TODO Implement interpreter # - start at firstExprIndex and interpret until the first ExpressionElement is "Empty" or we reached lastExprIndex end return end "Retrieves the number of entries for the largest inner vector" function get_max_inner_length(vec::Vector{Vector{T}})::Int where T maxLength = 0 @inbounds for i in eachindex(vec) if length(vec[i]) > maxLength maxLength = length(vec[i]) end end return maxLength end "Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```" function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T dataCols = get_max_inner_length(data) dataRows = length(data) dataMat = convert_to_matrix(data, invalidElement) cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions copyto!(cudaArr, dataMat) return cudaArr end "Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length. All entries that cannot be filled have ```invalidElement``` as their value " function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T vecCols = get_max_inner_length(vec) vecRows = length(vec) vecMat = fill(invalidElement, vecCols, vecRows) for i in eachindex(vec) vecMat[:,i] = copyto!(vecMat[:,i], vec[i]) end return vecMat end # @deprecate InterpretExplicit!(op::Operator, x, y) interpret_expression(expression, variables, parameters, exprIndex::Int) # Kernel function InterpretExplicit!(op::Operator, x, y) index = (blockIdx().x - 1) * blockDim().x + threadIdx().x stride = gridDim().x * blockDim().x if op == ADD # @cuprintln("Performing Addition") # Will only be displayed when the GPU is synchronized for i = index:stride:length(y) @inbounds y[i] += x[i] end return elseif op == SUBTRACT # @cuprintln("Performing Subtraction") # Will only be displayed when the GPU is synchronized for i = index:stride:length(y) @inbounds y[i] -= x[i] end return end end end