using CUDA using .ExpressionProcessing using .Transpiler expressions = Vector{Expr}(undef, 3) variables = Matrix{Float32}(undef, 5, 4) parameters = Vector{Vector{Float32}}(undef, 3) expressions[1] = :(1 + 3 * 5 / 7 - sqrt(4)) expressions[2] = :(5 + x1 + 1 * x2 + p1 + p2 + x1^x3) expressions[3] = :(log(x1) / x2 * sqrt(p1) + x3^x4 - exp(x5)) variables[1,1] = 2.0 variables[2,1] = 3.0 variables[3,1] = 0.0 variables[4,1] = 1.0 variables[5,1] = 0.0 variables[1,2] = 2.0 variables[2,2] = 5.0 variables[3,2] = 3.0 variables[4,2] = 0.0 variables[5,2] = 0.0 variables[1,3] = 6.0 variables[2,3] = 2.0 variables[3,3] = 2.0 variables[4,3] = 4.0 variables[5,3] = 2.0 variables[1,4] = 1.0 variables[2,4] = 2.0 variables[3,4] = 3.0 variables[4,4] = 4.0 variables[5,4] = 5.0 parameters[1] = Vector{Float32}(undef, 0) parameters[2] = Vector{Float32}(undef, 2) parameters[3] = Vector{Float32}(undef, 1) parameters[2][1] = 5.0 parameters[2][2] = 0.0 parameters[3][1] = 16.0 @testset "Test transpiler evaluation" begin results = Transpiler.evaluate(expressions, variables, parameters) # dump(expressions[3]; maxdepth=10) # Expr 1: @test isapprox(results[1,1], 1.14286) @test isapprox(results[2,1], 1.14286) @test isapprox(results[3,1], 1.14286) @test isapprox(results[4,1], 1.14286) #Expr 2: @test isapprox(results[1,2], 16.0) @test isapprox(results[2,2], 25.0) @test isapprox(results[3,2], 54.0) @test isapprox(results[4,2], 14.0) #Expr3: @test isapprox(results[1,3], -0.07580) @test isapprox(results[2,3], 0.55452) @test isapprox(results[3,3], 12.19446) @test isapprox(results[4,3], -67.41316) end # TODO: test performance of transpiler PTX generation when doing "return String(take!(buffer))" vs "return take!(buffer)"