Files
master-thesis/package/test/PerformanceTuning.jl
Daniel 250deb334c
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
benchmarking: tuned interpreter blocksize
2025-05-20 09:05:35 +02:00

38 lines
960 B
Julia

using CUDA
using DelimitedFiles
using GZip
using .Transpiler
using .Interpreter
include("parser.jl") # to parse expressions from a file
data,varnames = readdlm("data/nikuradse_1.csv", ',', header=true);
X = permutedims(convert(Matrix{Float32}, data))
exprs = Expr[]
parameters = Vector{Vector{Float32}}()
varnames = ["x$i" for i in 1:10]
paramnames = ["p$i" for i in 1:20]
# data/esr_nvar2_len10.txt.gz_9.txt.gz has ~250_000 exprs
# data/esr_nvar2_len10.txt.gz_10.txt.gz has ~800_000 exrps
GZip.open("data/esr_nvar2_len10.txt.gz_3.txt.gz") do io
for line in eachline(io)
expr, p = parse_infix(line, varnames, paramnames)
push!(exprs, expr)
push!(parameters, randn(Float32, length(p)))
end
end
expr_reps = 1
@testset "Interpreter Tuning" begin
# CUDA.@profile interpret_gpu(exprs, X, parameters; repetitions=expr_reps)
end
@testset "Transpiler Tuning" begin
CUDA.@profile evaluate_gpu(exprs, X, parameters; repetitions=expr_reps)
end