Some checks are pending
		
		
	
	CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
				
			CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
				
			CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
				
			
		
			
				
	
	
		
			119 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Julia
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Julia
		
	
	
	
	
	
| module Interpreter
 | |
| using CUDA
 | |
| using StaticArrays
 | |
| using ..ExpressionProcessing
 | |
| using ..Utils
 | |
| 
 | |
| export interpret
 | |
| 
 | |
| const cacheFrontend = Dict{Expr, PostfixType}()
 | |
| 
 | |
| "Interprets the given expressions with the values provided.
 | |
| # Arguments
 | |
|  - expressions::Vector{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form
 | |
|  - variables::Matrix{Float32} : The variables to use. Each column is mapped to the variables x1..xn
 | |
|  - parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
 | |
| "
 | |
| function interpret(expressions::Vector{Expr}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
 | |
| 	exprs = Vector{ExpressionProcessing.PostfixType}(undef, length(expressions))
 | |
| 	@inbounds for i in eachindex(expressions)
 | |
| 		exprs[i] = ExpressionProcessing.expr_to_postfix(expressions[i], cacheFrontend)
 | |
| 	end
 | |
| 	
 | |
| 	variableCols = size(variables, 2) # number of variable sets to use for each expression
 | |
| 	cudaVars = CuArray(variables)
 | |
| 	cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
 | |
| 	cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression; TODO: replace this 0 with 'undef' if possible
 | |
| 	# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
 | |
| 	cudaStepsize = CuArray([Utils.get_max_inner_length(exprs), Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
 | |
| 
 | |
| 	# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
 | |
| 	cudaResults = CuArray{Float32}(undef, variableCols, length(exprs))
 | |
| 
 | |
| 	# Start kernel for each expression to ensure that no warp is working on different expressions
 | |
| 	@inbounds for i in eachindex(exprs)
 | |
| 		# TODO: Currently only the first expression gets evaluated. Either use a view on "cudaExprs" to determine the correct expression or extend cudaStepsize to include this information (this information was removed in a previous commit)
 | |
| 		# If a "view" is used, then the ExpressionProcessing must be updated to always include the stop opcode at the end
 | |
| 		numThreads = min(variableCols, 128)
 | |
| 		numBlocks = cld(variableCols, numThreads)
 | |
| 
 | |
| 		@cuda threads=numThreads blocks=numBlocks fastmath=true interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
 | |
| 	end
 | |
| 
 | |
| 	return cudaResults
 | |
| end
 | |
| 
 | |
| #TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking
 | |
| const MAX_STACK_SIZE = 25 # The depth of the stack to store the values and intermediate results
 | |
| function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
 | |
| 	varSetIndex = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based)
 | |
| 	@inbounds variableCols = length(variables) / stepsize[3] # number of variable sets
 | |
| 
 | |
| 	if varSetIndex > variableCols
 | |
| 		return
 | |
| 	end
 | |
| 
 | |
| 	@inbounds firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
 | |
| 	@inbounds lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
 | |
| 	@inbounds firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive
 | |
| 	# TODO: Use @cuDynamicSharedMem/@cuStaticSharedMem for variables and or parameters
 | |
| 
 | |
| 	operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage
 | |
| 	operationStackTop = 0 # stores index of the last defined/valid value
 | |
| 	
 | |
| 	@inbounds firstVariableIndex = ((varSetIndex-1) * stepsize[3]) # Exclusive
 | |
| 	
 | |
| 	@inbounds for i in firstExprIndex:lastExprIndex
 | |
| 		token = expressions[i]
 | |
| 		if token.Type == EMPTY
 | |
| 			break
 | |
| 		elseif token.Type == VARIABLE
 | |
| 			operationStackTop += 1
 | |
| 			operationStack[operationStackTop] = variables[firstVariableIndex + token.Value]
 | |
| 		elseif token.Type == PARAMETER
 | |
| 			operationStackTop += 1
 | |
| 			operationStack[operationStackTop] = parameters[firstParamIndex + token.Value]
 | |
| 		elseif token.Type == FLOAT32
 | |
| 			operationStackTop += 1
 | |
| 			operationStack[operationStackTop] = reinterpret(Float32, token.Value)
 | |
| 		elseif token.Type == OPERATOR
 | |
| 			opcode = reinterpret(Operator, token.Value)
 | |
| 			if opcode == ADD
 | |
| 				operationStackTop -= 1
 | |
| 				operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1]
 | |
| 			elseif opcode == SUBTRACT
 | |
| 				operationStackTop -= 1
 | |
| 				operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1]
 | |
| 			elseif opcode == MULTIPLY
 | |
| 				operationStackTop -= 1
 | |
| 				operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1]
 | |
| 			elseif opcode == DIVIDE
 | |
| 				operationStackTop -= 1
 | |
| 				operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1]
 | |
| 			elseif opcode == POWER
 | |
| 				operationStackTop -= 1
 | |
| 				operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1]
 | |
| 			elseif opcode == ABS
 | |
| 				operationStack[operationStackTop] = abs(operationStack[operationStackTop])
 | |
| 			elseif opcode == LOG
 | |
| 				operationStack[operationStackTop] = log(operationStack[operationStackTop])
 | |
| 			elseif opcode == EXP
 | |
| 				operationStack[operationStackTop] = exp(operationStack[operationStackTop])
 | |
| 			elseif opcode == SQRT
 | |
| 				operationStack[operationStackTop] = sqrt(operationStack[operationStackTop])
 | |
| 			end
 | |
| 		else
 | |
| 			operationStack[operationStackTop] = NaN32
 | |
| 			break
 | |
| 		end
 | |
| 	end
 | |
| 
 | |
| 	# "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column)
 | |
| 	# "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row)
 | |
| 	resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive
 | |
| 	@inbounds results[resultIndex] = operationStack[operationStackTop]
 | |
| 
 | |
| 	return
 | |
| end
 | |
| 
 | |
| end |