master-thesis/package/src/Code.jl
2025-02-19 16:38:11 +01:00

207 lines
7.4 KiB
Julia

using Printf
@enum Opcode::UInt8 begin
opc_stop = 1 # must start with 1 here TODO: remove stop
opc_add
opc_sub
opc_mul
opc_div
opc_inv
opc_log
opc_log10
opc_exp
opc_pow
opc_powconst
opc_powabs
opc_neg
opc_abs
opc_sign
opc_sin
opc_asin
opc_tan
opc_tanh
opc_cos
opc_cosh
opc_constant
opc_param
opc_variable
end
const terminal_opcodes = [opc_stop, opc_constant, opc_param, opc_variable]
const unary_opcodes = [opc_log, opc_log10, opc_exp, opc_abs, opc_sign, opc_sin, opc_cos, opc_cosh, opc_asin, opc_tan, opc_tanh, opc_powconst, opc_neg, opc_inv]
const binary_opcodes = [opc_add, opc_sub, opc_mul, opc_div, opc_pow, opc_powabs]
function opcode(sy::Symbol)::Opcode
if sy == :+ return opc_add
elseif sy == :- return opc_sub
elseif sy == :* return opc_mul
elseif sy == :/ return opc_div
elseif sy == :inv return opc_inv
elseif sy == :log return opc_log
elseif sy == :log10 return opc_log10
elseif sy == :exp return opc_exp
elseif sy == :^ return opc_powabs # TODO: this is temporary to enforce that all powers are evaluated as pow(abs(...)) for parameter optimization
elseif sy == :powabs return opc_powabs # TODO: this is temporary to enforce that all powers are evaluated as pow(abs(...)) for parameter optimization
elseif sy == :abs return opc_abs
elseif sy == :sign return opc_sign
elseif sy == :sin return opc_sin
elseif sy == :asin return opc_asin
elseif sy == :cos return opc_cos
elseif sy == :cosh return opc_cosh
elseif sy == :tan return opc_tan
elseif sy == :tanh return opc_tanh
else error("no opcode for symbol $sy")
end
end
function degree(opc::Opcode)::Integer
if opc in terminal_opcodes return 0
elseif opc in unary_opcodes return 1
elseif opc in binary_opcodes return 2
else error("unknown degree of opcode $opc")
end
end
# code is a Vector{Instruction} which is a linear representation of a directed acyclic graph of expressions.
# The code can be evaluated from left to right.
struct Instruction{T}
opcode::Opcode
arg1idx::UInt32 # index of first argument. 0 for terminals
arg2idx::UInt32 # index of second argument. 0 for functions with a single argument
idx::UInt32 # for variables and parameters
val::T # for constants
end
function Base.show(io::IO, instr::Instruction)
Printf.format(io, Printf.format"%15s %3d %3d %3d %f", instr.opcode, instr.arg1idx, instr.arg2idx, instr.idx, instr.val)
end
create_const_instruction(val::T) where {T} = Instruction{T}(opc_constant, UInt32(0), UInt32(0), UInt32(0), val)
create_var_instruction(::Type{T}, varidx) where {T} = Instruction{T}(opc_variable, UInt32(0), UInt32(0), UInt32(varidx), zero(T))
create_param_instruction(::Type{T}, paramidx; val::T = zero(T)) where {T} = Instruction{T}(opc_param, UInt32(0), UInt32(0), UInt32(paramidx), val)
function convert_expr_to_code(::Type{T}, expr::Expr)::Vector{Instruction{T}} where {T}
code = Vector{Instruction{T}}()
Base.remove_linenums!(expr)
paramTup = expr.args[1]
xSy = paramTup.args[1]
pSy = paramTup.args[2]
body = expr.args[2]
cache = Dict{Any,Int32}() # for de-duplication of expressions. If an expression is in the cache simply return the index of the existing code
convert_expr_to_code!(code, cache, body, xSy, pSy)
# for debugging
# for tup in sort(cache; byvalue=true)
# println(tup)
# end
return code
end
# uses cache (hashcons) to de-duplicate subexpressions in the tree.
function convert_expr_to_code!(code::Vector{Instruction{T}}, cache, val::TV, xSy, pSy)::UInt32 where {T,TV}
if haskey(cache, val) return cache[val] end
push!(code, create_const_instruction(T(val)))
cache[val] = length(code)
return length(code)
end
function convert_expr_to_code!(code::Vector{Instruction{T}}, cache, expr::Expr, xSy, pSy)::UInt32 where {T}
# predicate to check if an expression is abs(...)
is_abs(a) = a isa Expr && a.head == :call && a.args[1] == :abs
if haskey(cache, expr) return cache[expr] end
sy = expr.head
if sy == :call
func = expr.args[1]
arg1idx::UInt32 = 0
arg2idx::UInt32 = 0
# unary functions
if length(expr.args) == 2
arg1idx = convert_expr_to_code!(code, cache, expr.args[2], xSy, pSy)
if (func == :-)
# - with one argument => negate
push!(code, Instruction{T}(opc_neg, arg1idx, UInt32(0), UInt32(0), zero(T)))
elseif (func == :sqrt)
push!(code, Instruction{T}(opc_powconst, arg1idx, UInt32(0), UInt32(0), T(0.5)))
else
push!(code, Instruction{T}(opcode(func), arg1idx, UInt32(0), UInt32(0), zero(T)))
end
elseif length(expr.args) == 3
arg1idx = convert_expr_to_code!(code, cache, expr.args[2], xSy, pSy)
if func == :^ && expr.args[3] isa Number && round(expr.args[3]) == expr.args[3] # is integer
# special case for constant powers
push!(code, Instruction{T}(opc_powconst, arg1idx, UInt32(0), UInt32(0), T(expr.args[3])))
elseif func == :^ && is_abs(expr.args[2])
# fuse pow(abs(x), y) --> powabs(x,y)
absexpr = expr.args[2]
x = absexpr.args[2]
arg1idx = convert_expr_to_code!(code, cache, x, xSy, pSy) # because of hashconsing this will return the index within the code for abs(x) generated above
arg2idx = convert_expr_to_code!(code, cache, expr.args[3], xSy, pSy)
push!(code, Instruction{T}(opc_powabs, arg1idx, arg2idx, UInt32(0), zero(T)))
else
arg2idx = convert_expr_to_code!(code, cache, expr.args[3], xSy, pSy)
push!(code, Instruction{T}(opcode(func), arg1idx, arg2idx, UInt32(0), zero(T)))
end
else
# dump(expr)
errpr("only unary and binary functions are supported ($func is not supported)")
end
elseif sy == :ref
arrSy = expr.args[1]
idx = expr.args[2]
if arrSy == xSy
push!(code, create_var_instruction(T, idx))
elseif arrSy == pSy
push!(code, create_param_instruction(T, idx))
else
dump(expr)
throw(UndefVarError("unknown symbol"))
end
else
error("Unsupported symbol $sy")
end
cache[expr] = length(code)
return length(code)
end
function Base.show(io::IO, code::AbstractArray{Instruction{T}}) where {T}
sym = Dict(
opc_stop => ".",
opc_add => "+",
opc_sub => "-",
opc_neg => "neg",
opc_mul => "*",
opc_div => "/",
opc_inv => "inv",
opc_pow => "^",
opc_powabs => "abs^",
opc_powconst => "^c",
opc_log => "log",
opc_log10 => "l10",
opc_exp => "exp",
opc_abs => "abs",
opc_sign => "sgn",
opc_sin => "sin",
opc_cos => "cos",
opc_variable => "var",
opc_constant => "con",
opc_param => "par",
)
for i in eachindex(code)
instr = code[i]
Printf.format(io, Printf.format"%4d %4s %3d %3d %3d %f", i, sym[instr.opcode], instr.arg1idx, instr.arg2idx, instr.idx, instr.val)
println(io)
# printfmtln(io, "{1:>4d} {2:>4s} {3:>3d} {4:>3d} {5:>3d} {6:>}", i, sym[instr.opcode], instr.arg1idx, instr.arg2idx, instr.idx, instr.val)
end
end