Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
63 lines
2.3 KiB
Julia
63 lines
2.3 KiB
Julia
using .Transpiler
|
|
using .Interpreter
|
|
|
|
# University setup at 10.20.1.7 if needed
|
|
|
|
@testset "CPU performance" begin
|
|
function test_cpu_interpreter(nrows; parallel = false)
|
|
exprs = [
|
|
# CPU interpreter requires an anonymous function and array ref s
|
|
:(p[1] * x[1] + p[2]), # 5 op
|
|
:((((x[1] + x[2]) + x[3]) + x[4]) + x[5]), # 9 op
|
|
:(log(abs(x[1]))), # 3 op
|
|
:(powabs(p[2] - powabs(p[1] + x[1], 1/x[1]),p[3])) # 13 op
|
|
] # 30 op
|
|
exprs = map(e -> Expr(:->, :(x,p), e), exprs)
|
|
X = randn(Float32, nrows, 10)
|
|
p = [randn(Float32, 10) for _ in 1:length(exprs)] # generate 10 random parameter values for each expr
|
|
|
|
# warmup
|
|
interpret_cpu(exprs, X, p)
|
|
expr_reps = 100 # for each expr
|
|
reps= 100
|
|
|
|
if parallel
|
|
t_sec = @elapsed fetch.([Threads.@spawn interpret_cpu(exprs, X, p; repetitions=expr_reps) for i in 1:reps])
|
|
println("~ $(round(30 * reps * expr_reps * nrows / 1e9 / t_sec, digits=2)) GFLOPS ($(Threads.nthreads()) threads) ($(round(peakflops(1000, eltype=Float32, ntrials=1) / 1e9, digits=2)) GFLOPS (peak, single-core))")
|
|
else
|
|
t_sec = @elapsed for i in 1:reps interpret_cpu(exprs, X, p; repetitions=expr_reps) end
|
|
println("~ $(round(30 * reps * expr_reps * nrows / 1e9 / t_sec, digits=2)) GFLOPS (single-core) ($(round(peakflops(1000, eltype=Float32, ntrials=1) / 1e9, digits=2)) GFLOPS (peak, single-core))")
|
|
end
|
|
true
|
|
end
|
|
|
|
LinearAlgebra.BLAS.set_num_threads(1) # only use a single thread for peakflops
|
|
|
|
@test test_cpu_interpreter(1000)
|
|
@test test_cpu_interpreter(1000, parallel=true) # start julia -t 6 for six threads
|
|
@test test_cpu_interpreter(10000)
|
|
@test test_cpu_interpreter(10000, parallel=true)
|
|
|
|
end
|
|
|
|
@testset "Interpreter Performance" begin
|
|
# Put data in shared memory:
|
|
# https://cuda.juliagpu.org/v2.6/api/kernel/#Shared-memory
|
|
|
|
# Make array const:
|
|
# https://cuda.juliagpu.org/v2.6/api/kernel/#Device-arrays
|
|
|
|
# Memory management like in C++ might help with performance improvements
|
|
# https://cuda.juliagpu.org/v2.6/lib/driver/#Memory-Management
|
|
end
|
|
|
|
@testset "Transpiler Performance" begin
|
|
# Put data in shared memory:
|
|
# https://cuda.juliagpu.org/v2.6/api/kernel/#Shared-memory
|
|
|
|
# Make array const:
|
|
# https://cuda.juliagpu.org/v2.6/api/kernel/#Device-arrays
|
|
|
|
# Memory management like in C++ might help with performance improvements
|
|
# https://cuda.juliagpu.org/v2.6/lib/driver/#Memory-Management
|
|
end |