master-thesis/thesis/chapters/relwork.tex
Daniel f3446a2b11
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
finished implementing thesis feedback
2025-03-14 16:11:25 +01:00

90 lines
24 KiB
TeX

\chapter{Fundamentals and Related Work}
\label{cha:relwork}
The goal of this chapter is to provide an overview of equation learning or symbolic regression to establish common knowledge of the topic and problem this thesis is trying to solve. First the field of equation learning is explored which helps to contextualise the topic of this thesis. The main part of this chapter is split into two sub-parts. The first part is exploring research that has been done in the field of general purpose computations on the GPU (GPGPU) as well as the fundamentals of it. Focus lies on exploring how graphics processing units (GPUs) are used to achieve substantial speed-ups and when and where they can be effectively employed. The second part describes the basics of how interpreters and compilers are built and how they can be adapted to the workflow of programming GPUs. When discussing GPU programming concepts, the terminology used is that of Nvidia and may differ from that used for AMD GPUs.
\section{Equation learning}
Equation learning is a field of research that can be used for understanding and discovering equations from a set of data from various fields like mathematics and physics. Data is usually much more abundant while models often are elusive which is demonstrated by \textcite{guillemot_climate_2022} where they explain how validating the models against large amounts of data is a big part in creating such models. Because of this effort, generating equations with a computer can more easily lead to discovering equations that describe the observed data. \textcite{brunton_discovering_2016} describe an algorithm that leverages equation learning to discover equations for physical systems. A more literal interpretation of equation learning is demonstrated by \textcite{pfahler_semantic_2020}. They use machine learning to learn the form of equations. Their aim was to simplify the discovery of relevant publications by the equations they use and not by technical terms, as they may differ by the field of research. However, this kind of equation learning is not relevant for this thesis.
Symbolic regression is a subset of equation learning, that specialises more towards discovering mathematical equations. A lot of research is done in this field. Using genetic programming (GP) for different problems, including symbolic regression, was first described by \textcite{koza_genetic_1994}. He described that finding a computer program to solve a problem for a given input and output, can be done by traversing the search space of all solutions. This fits well for the goal of symbolic regression, where a mathematical expression needs to be found to describe a problem with specific inputs and outputs. Later, \textcite{koza_human-competitive_2010} provided an overview of results that were generated with the help of GP and were competitive with human solutions, showing how symbolic regression is a useful tool. In their book Symbolic Regression, \textcite{kronberger_symbolic_2024} show how symbolic regression can be applied for real world scenarios. They also describe symbolic regression in great detail, while being tailored towards beginners and experts.
\textcite{keijzer_scaled_2004} and \textcite{korns_accuracy_2011} presented ways of improving the quality of symbolic regression algorithms, making symbolic regression more feasible for problem-solving. \textcite{bartlett_exhaustive_2024} describe an exhaustive approach for symbolic regression which can find the true optimum for perfectly optimised parameters while retaining simple and interpretable results. Alternatives to GP for symbolic regression also exist with one proposed by \textcite{jin_bayesian_2020}. Their approach increased the quality of the results noticeably compared to GP alternatives. Another alternative to heuristics like GP is the usage of neural networks. One such alternative has been introduced by \textcite{martius_extrapolation_2016} where they used a neural network for their equation learner with mixed results. Later, an extension has been provided by \textcite{sahoo_learning_2018}. They introduced the division operator, which led to much better results. Further improvements have been described by \textcite{werner_informed_2021} with their informed equation learner. By incorporating domain expert knowledge they could limit the search space and find better solutions for particular domains. One drawback of these three implementations is the fact that their neural networks are fixed. An equation learner which can change the network at runtime and therefore evolve over time is proposed by \textcite{dong_evolving_2024}. Their approach further improved the results of neural network equation learners. In their work, \textcite{lemos_rediscovering_2022} also used a neural network for symbolic regression. They were able to find an equivalent to Newton's law of gravitation and rediscovered Newton's second and third law only with trajectory data of bodies of our solar system. Although these laws were already known, this research has shown how neural networks and machine learning in general have great potential. An implementation for an equation learner in the physics domain is proposed by \textcite{sun_symbolic_2023}. Their algorithm was specifically designed for nonlinear dynamics often occurring in physical systems. When compared to other implementations their equation learner was able to create better results but have the main drawback of high computational cost. As seen by these publications, increasing the quality of generated equations and also increasing the speed of finding these equations is a central part in symbolic regression and equation learning in general.
As described earlier, the goal of equation learning is to find an expression that fits a given set of data. The data usually consists of a set of inputs that have been applied to the unknown expression and the output after the input has been applied. An example for such data is described by \textcite{werner_informed_2021}. In one instance they want to find the power loss formula for an electric machine. They used four inputs, direct and quadratic current as well as temperature and motor speed, and they have an observed output which is the power loss. Now for an arbitrary problem with different input and outputs, the equation learner tries to find an expression that fits this data \parencite{koza_genetic_1994}. Fitting in this context means that when the input is applied to the expression, the result will be the same as the observed output. In order to avoid overfitting \textcite{bomarito_bayesian_2022} have proposed a way of using Bayesian model selection to combat overfitting and reduce the complexity of the generated expressions. This also helps with making the expressions more generalisable and therefore be applicable to unseen inputs. A survey conducted by \textcite{dabhi_survey_2012} shows how overfitting is not desirable and why more generalisable solutions are preferred. To generate an equation, first the operators need to be defined that make up the equation. It is also possible to define a maximum length for an expression as proposed by \textcite{bartlett_exhaustive_2024}. Expressions also consist of constants as well as variables which represent the inputs. Assuming that a given problem has three variables, the equation learner could generate an expression as seen in \ref{eq:example} where $x_n$ are the variables and $O$ is the output which should correspond to the observed output for the given variables.
\begin{equation} \label{eq:example}
O = 5 - \text{abs}(x_1) * \text{sqrt}(x_2) / 10 + 2 \char`^ x_3
\end{equation}
A typical equation learner generates multiple expressions at once. If the equation learner generates $300$ expressions and each expression needs to be evaluated $50$ times to get the best parametrisation for this expression, the total number of evaluations is $300 * 50 = 15\,000$. However, it is likely that multiple runs or generations in the context of GP need to be performed. The number of generations is dependent to the problem, but assuming a maximum of $100$ generations the total number of evaluations is equal to $300 * 50 * 100 = 1\,500\,000$. These values have been taken from the equation learner for predicting discharge voltage curves of batteries as described by \textcite{kronberger_symbolic_2024}. Their equation learner converged after 54 generations, resulting in evaluating $800\,000$ expressions. Depending on the complexity of the generated expressions, performing all of these evaluations takes up a lot of the runtime. Their results took over two days on an eight core desktop CPU. While they did not provide runtime information for all problems they tested, the voltage curve prediction was the slowest. The other problems were in the range of a few seconds and up to a day. Especially the problems that took several hours to days to finish show, that there is still room for performance improvements. While a better CPU with more cores can be used, it is interesting to determine, if using Graphics cards can yield noticeable better performance or not, which is the goal of this thesis.
\section[GPGPU]{General Purpose Computation on Graphics Processing Units}
\label{sec:gpgpu}
Graphics cards (GPUs) are commonly used to increase the performance of many different applications. Originally they were designed to improve performance and visual quality in games. \textcite{dokken_gpu_2005} first described the usage of GPUs for general purpose programming (GPGPU). They have shown how the graphics pipeline can be used for GPGPU programming. Because this approach also requires the programmer to understand the graphics terminology, this was not a great solution. Therefore, Nvidia released CUDA\footnote{\url{https://developer.nvidia.com/cuda-toolkit}} in 2007 with the goal of allowing developers to program GPUs independent of the graphics pipeline and terminology. A study of the programmability of GPUs with CUDA and the resulting performance has been conducted by \textcite{huang_gpu_2008}. They found that GPGPU programming has potential, even for non-embarassingly parallel problems. Research is also done in making the low level CUDA development simpler. \textcite{han_hicuda_2011} have described a directive-based language to make development simpler and less error-prone, while retaining the performance of handwritten code. To drastically simplify CUDA development, \textcite{besard_effective_2019} showed that it is possible to develop with CUDA in the high level programming language Julia\footnote{\url{https://julialang.org/}} with similar performance to CUDA written in C. In a subsequent study \textcite{lin_comparing_2021} found that high performance computing (HPC) on the CPU and GPU in Julia performs similar to HPC development in C. This means that Julia can be a viable alternative to Fortran, C and C++ in the HPC field and has the additional benefit of developer comfort since it is a high level language with modern features such as garbage-collectors. \textcite{besard_rapid_2019} have also shown how the combination of Julia and CUDA help in rapidly developing HPC software. While this thesis in general revolves around CUDA, there also exist alternatives by AMD called ROCm\footnote{\url{https://www.amd.com/de/products/software/rocm.html}} and a vendor independent alternative called OpenCL\footnote{\url{https://www.khronos.org/opencl/}}.
While in the early days of GPGPU programming a lot of research has been done to assess if this approach is feasible, it now seems obvious to use GPUs to accelerate algorithms. GPUs have been used early to speed up weather simulation models. \textcite{michalakes_gpu_2008} proposed a method for simulating weather with the Weather Research and Forecast (WRF) model on a GPU. With their approach, they reached a speed-up of the most compute intensive task of 5 to 20, with little GPU optimisation effort. They also found that the GPU usage was low, meaning there are resources and potential for more detailed simulations. Generally, simulations are great candidates for using GPUs, as they can benefit heavily from a high degree of parallelism and data throughput. \textcite{koster_high-performance_2020} have developed a way of using adaptive time steps on the GPU to considerably improve the performance of numerical and discrete simulations. In addition to the performance gains they were able to retain the precision and constraint correctness of the simulation. Black hole simulations are crucial for science and education for a better understanding of our world. \textcite{verbraeck_interactive_2021} have shown that simulating complex Kerr (rotating) black holes can be done on consumer hardware in a few seconds. Schwarzschild black hole simulations can be performed in real-time with GPUs as described by \textcite{hissbach_overview_2022} which is especially helpful for educational scenarios. While both approaches do not have the same accuracy as detailed simulations on supercomputers, they show how a single GPU can yield similar accuracy at a fraction of the cost. Software network routing can also heavily benefit from GPU acceleration as shown by \textcite{han_packetshader_2010}, where they achieved a significantly higher throughput than with a CPU only implementation. Finite element structural analysis is an essential tool for many branches of engineering and can also heavily benefit from the usage of GPUs as demonstrated by \textcite{georgescu_gpu_2013}. However, it also needs to be noted, that GPUs are not always better performing than CPUs as illustrated by \textcite{lee_debunking_2010}, but they still can lead to performance improvements nonetheless.
\subsection{Programming GPUs}
The development process on a GPU is vastly different from a CPU. A CPU has tens or hundreds of complex cores with the AMD Epyc 9965\footnote{\url{https://www.amd.com/en/products/processors/server/epyc/9005-series/amd-epyc-9965.html}} having a staggering $192$ of those complex cores and twice as many threads. A guide for a simple one core 8-bit CPU has been published by \textcite{schuurman_step-by-step_2013}. He describes the different and complex parts of a CPU core. Modern CPUs are even more complex, with dedicated fast integer and floating-point arithmetic gates as well as logic gates, sophisticated branch prediction and much more. This makes a CPU perfect for handling complex control flows on a single program strand and on modern CPUs even multiple strands simultaneously. However, as seen in section \ref{sec:gpgpu}, this often isn't enough. On the other hand, a GPU contains thousands or even tens of thousands of cores. For example, the GeForce RTX 5090\footnote{\url{https://www.nvidia.com/en-us/geforce/graphics-cards/50-series/rtx-5090/}} contains a total of $21760$ CUDA cores. To achieve this enormous core count a single GPU core has to be much simpler than one CPU core. As described by \textcite{nvidia_cuda_2024} a GPU designates much more transistors towards floating-point computations. This results in less efficient integer arithmetic and control flow handling. There is also less Cache available per core and clock speeds are usually also much lower than those on a CPU. An overview of the differences of a CPU and a GPU architecture can be seen in figure \ref{fig:cpu_vs_gpu}.
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{nvidia_cpu_vs_gpu.png}
\caption{Overview of the architecture of a CPU (left) and a GPU (right). Note the higher number of simpler cores on the GPU \parencite{nvidia_cuda_2024}.}
\label{fig:cpu_vs_gpu}
\end{figure}
Despite these drawbacks, the sheer number of cores, makes a GPU a valid choice when considering improving the performance of an algorithm. Because of the high number of cores, GPUs are best suited for data parallel scenarios. This is due to the SIMD architecture of these cards. SIMD stands for Sinlge-Instruction Multiple-Data and states that there is a single stream of instructions that is executed on a huge number of data streams. \textcite{franchetti_efficient_2005} and \textcite{tian_compiling_2012} describe ways of using SIMD instructions on the CPU. Their approaches lead to noticeable speed-ups of 3.3 and 4.7 respectively by using SIMD instructions instead of serial computations. Extending this to GPUs which are specifically built for SIMD/data parallel calculations shows why they are so powerful despite having less complex and slower cores than a CPU.
\subsubsection{Thread Hierarchy and Tuning}
The thousands of cores on a GPU, also called threads, are grouped together in several categories. This is the Thread hierarchy of GPUs. The developer can influence this grouping to a degree which allows them to tune their algorithm for optimal performance. In order to develop a well performing algorithm, it is necessary to know how this grouping works. Tuning the grouping is unique to each algorithm and also dependent on the GPU used, which means it is important to test a lot of different configurations to achieve the best possible result. This section aims at exploring the thread hierarchy and how it can be tuned to fit an algorithm.
At the lowest level of a GPU exists a Streaming Multiprocessor (SM), which is a hardware unit responsible for scheduling and executing threads and also contains the registers used by these threads. An SM is always executing a group of 32 threads simultaneously, and this group is called a warp. The number of threads that can be started is virtually unlimited. However, threads must be grouped in a block, with one block typically containing a maximum of 2048 threads but is often configured to be less. Therefore, if more than 2048 threads are required, more blocks must be created. Blocks can also be grouped thread block clusters which is optional, but can be useful in certain scenarios. All thread blocks or thread block clusters are part of a grid, which manifests as a dispatch of the code run the GPU, also called kernel \parencite{amd_hip_2025}. All threads in one block have access to some shared memory, which can be used for L1 caching or communication between threads. It is important that the blocks can be scheduled independently, with no dependencies between them. This allows the scheduler to schedule blocks and threads as efficiently as possible. All threads within a warp are guaranteed to be part of the same block, and are therefore executed simultaneously and can access the same memory addresses. Figure \ref{fig:thread_hierarchy} depicts how threads in a block are grouped into warps for execution and how they share memory.
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{thread_hierarchy.png}
\caption{An overview of the thread hierarchy with blocks being split into multiple warps and their shared memory \parencite{amd_hip_2025}.}
\label{fig:thread_hierarchy}
\end{figure}
A piece of code that is executed on a GPU is written as a kernel which can be configured. The most important configuration is how threads are grouped into blocks. The GPU allows the kernel to allocate threads and blocks and block clusters in up to three dimensions. This is often useful because of the already mentioned shared memory, which will be explained in more detail in section \ref{sec:memory_model}. Considering the case where an image needs to be blurred, it not only simplifies the development if threads are arranged in a 2D grid, it also helps with optimising memory access. As the threads in a block, need to access a lot of the same data, this data can be loaded in the shared memory of the block. This allows the data to be accessed much quicker compared to when threads are allocated in only one dimension. With one dimensional blocks it is possible that threads assigned to nearby pixels, are part of a different block, leading to a lot of duplicate data transfer.
All threads in a warp start at the same point in a program, they have their own instruction address, allowing them to work independently. Because of the SIMD architecture, all threads in a warp must execute the same instructions and if threads start diverging, the SM must pause threads with different instructions and execute them later. Figure \ref{fig:thread_divergence} shows how such divergences can impact performance. The situation described by the figure also shows, that after the divergent thread would reconverge, this does not happen and leads to T2 being executed after T1 and T3 are finished. In situations where a lot of data dependent thread divergence happens, most of the benefits of using a GPU have vanished.
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{thread_divergence.png}
\caption{Thread T2 wants to execute instruction B while T1 and T3 want to execute instruction A. Therefore T2 will be an inactive thread this cycle and active once T1 and T3 are finished. This means that now the divergent threads are serialised.}
\label{fig:thread_divergence}
\end{figure}
Threads not executing the same instruction is against the SIMD principle but can happen in reality, due to data dependent branching. Consequently, this leads to bad resource utilisation, which in turn leads to worse performance. Another possibility of threads being paused (inactive threads) is the fact that sometimes, the number of threads started is not divisible by 32. In such cases, the last warp still contains 32 threads but only the threads with work are executed \parencite{nvidia_cuda_2024}.
Modern GPUs implement the so called Single-Instruction Multiple-Thread (SIMT) architecture. In many cases a developer does not need to know the details of SIMT and can develop fast and correct programs with just the SIMD architecture in mind. However, leveraging the power of SIMT can yield substantial performance gains by re-converging threads once data dependent divergence occurred. A proposal for a re-convergence algorithm was proposed by \textcite{collange_stack-less_2011} where they have shown that these approaches help with hardware occupation, resulting in improved performance as threads are now no longer fully serialised. Another approach for increasing occupancy using the SIMT architecture is proposed by \textcite{fung_thread_2011}. They introduced a technique for compacting thread blocks by moving divergent threads to new warps until they reconverge. This approach resulted in a noticeable speed-up between 17\% and 22\%. Another example where a SIMT aware algorithm can perform better was proposed by \textcite{koster_massively_2020}. While they did not implement techniques for thread re-convergence, they implemented a thread compaction algorithm. On data-dependent divergence it is possible for threads to end early, leaving a warp with only partial active threads. This means the deactivated threads are still occupied and cannot be used for other work. Their thread compaction tackles this problem by moving active threads into a new thread block, releasing the inactive threads to perform other work. With this they were able to gain a speed-up of roughly 4 times compared to previous implementations.
% !!! Find an image that can depict what SIMT is !!!
% Maybe this can also be used to better explain SIMT: https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html#programming-model-simt
\subsubsection{Memory Model}
\label{sec:memory_model}
On a GPU there are two parts that contribute to the performance of an algorithm. The one already looked at is the compute-portion of the GPU. This is necessary because if threads are serialised or run inefficiently, there is nothing that can make the algorithm execute faster. However, algorithms run on a GPU usually require huge amounts of data to be processed, as they are designed for exactly that purpose. The purpose of this section is to explain how the memory model of the GPU works and how it can influence the performance of an algorithm.
Talk about memory model and memory allocation (with the one paper diving into dynamic allocations)
Memory transfer (with streams potentially)
\subsection[PTX]{Parallel Thread Execution}
Describe what PTX is to get a common ground for the implementation chapter. Probably a short section
\section{Compilers}
Maybe even move this entire section to "Concept and Design"?
brief overview about compilers (just setting the stage for the subsections basically). Talk about register management and these things.
\subsection{Interpreters}
What are interpreters; how they work; should mostly contain/reference gpu interpreters
\subsection{Transpilers}
talk about what transpilers are and how to implement them. If possible also gpu specific transpilation.