updated shader to include code for multiple light sources
This commit is contained in:
		@ -168,6 +168,7 @@
 | 
			
		||||
    <Image Include="images\awesomeface.png" />
 | 
			
		||||
    <Image Include="images\container.jpg" />
 | 
			
		||||
    <Image Include="images\container2.png" />
 | 
			
		||||
    <Image Include="images\container2_specular.png" />
 | 
			
		||||
    <Image Include="images\wall.jpg" />
 | 
			
		||||
  </ItemGroup>
 | 
			
		||||
  <ItemGroup>
 | 
			
		||||
 | 
			
		||||
@ -85,6 +85,9 @@
 | 
			
		||||
    <Image Include="images\container2.png">
 | 
			
		||||
      <Filter>Resource Files</Filter>
 | 
			
		||||
    </Image>
 | 
			
		||||
    <Image Include="images\container2_specular.png">
 | 
			
		||||
      <Filter>Resource Files</Filter>
 | 
			
		||||
    </Image>
 | 
			
		||||
  </ItemGroup>
 | 
			
		||||
  <ItemGroup>
 | 
			
		||||
    <None Include="shaders\default\simple.vert" />
 | 
			
		||||
 | 
			
		||||
@ -16,7 +16,7 @@
 | 
			
		||||
#include "vertices.h"
 | 
			
		||||
 | 
			
		||||
// Continue: https://learnopengl.com/Lighting/Multiple-lights
 | 
			
		||||
// Chapter: Not yet started
 | 
			
		||||
// Chapter: Putting it all together
 | 
			
		||||
//
 | 
			
		||||
// TODO: look at project->properties->VC++ Directories-> change everything to the Environment var
 | 
			
		||||
// For the "real" Nebulix Engine setup everything so it can be compiled/used with VSCode/CLion and not just VS 
 | 
			
		||||
@ -222,17 +222,17 @@ int main()
 | 
			
		||||
		lighting->SetInt("material.specularMap", 1);
 | 
			
		||||
		lighting->SetFloat("material.specularColour", 0.5f, 0.5f, 0.5f);
 | 
			
		||||
		lighting->SetFloat("material.shininess", 32.0f);
 | 
			
		||||
		lighting->SetFloat("light.ambientIntensity", ambientColour);
 | 
			
		||||
		lighting->SetFloat("light.diffuseIntensity", diffuseColour);
 | 
			
		||||
		lighting->SetFloat("light.specularIntensity", 1.0f, 1.0f, 1.0f);
 | 
			
		||||
		lighting->SetFloat("light.position", cam.Position);
 | 
			
		||||
		lighting->SetFloat("light.direction", cam.Front);
 | 
			
		||||
		lighting->SetFloat("light.cutOffAngle", glm::cos(glm::radians(12.5f)));
 | 
			
		||||
		lighting->SetFloat("light.outerCutOffAngle", glm::cos(glm::radians(20.0f)));
 | 
			
		||||
		lighting->SetFloat("spotLight.ambientIntensity", ambientColour);
 | 
			
		||||
		lighting->SetFloat("spotLight.diffuseIntensity", diffuseColour);
 | 
			
		||||
		lighting->SetFloat("spotLight.specularIntensity", 1.0f, 1.0f, 1.0f);
 | 
			
		||||
		lighting->SetFloat("spotLight.position", cam.Position);
 | 
			
		||||
		lighting->SetFloat("spotLight.direction", cam.Front);
 | 
			
		||||
		lighting->SetFloat("spotLight.cutOffAngle", glm::cos(glm::radians(12.5f)));
 | 
			
		||||
		lighting->SetFloat("spotLight.outerCutOffAngle", glm::cos(glm::radians(20.0f)));
 | 
			
		||||
		lighting->SetFloat("viewPosition", cam.Position);
 | 
			
		||||
		lighting->SetFloat("light.constant", 1.0f);
 | 
			
		||||
		lighting->SetFloat("light.linear", 0.09f);
 | 
			
		||||
		lighting->SetFloat("light.quadratic", 0.032f);
 | 
			
		||||
		lighting->SetFloat("spotLight.constant", 1.0f);
 | 
			
		||||
		lighting->SetFloat("spotLight.linear", 0.09f);
 | 
			
		||||
		lighting->SetFloat("spotLight.quadratic", 0.032f);
 | 
			
		||||
 | 
			
		||||
		diffuseMap.BindTexture();
 | 
			
		||||
		diffuseMap.BindTexture(GL_TEXTURE1);
 | 
			
		||||
 | 
			
		||||
@ -1,10 +1,13 @@
 | 
			
		||||
#version 330 core
 | 
			
		||||
 | 
			
		||||
#define NR_POINT_LIGHTS 4
 | 
			
		||||
 | 
			
		||||
struct Material {
 | 
			
		||||
	sampler2D diffuseMap;
 | 
			
		||||
	sampler2D specularMap;
 | 
			
		||||
	float shininess;
 | 
			
		||||
};
 | 
			
		||||
struct Light {
 | 
			
		||||
struct SpotLight {
 | 
			
		||||
	vec3 position;
 | 
			
		||||
	vec3 direction;
 | 
			
		||||
	float cutOffAngle;
 | 
			
		||||
@ -19,42 +22,107 @@ struct Light {
 | 
			
		||||
	float quadratic;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct DirectionalLight {
 | 
			
		||||
	vec3 direction;
 | 
			
		||||
 | 
			
		||||
	vec3 ambient;
 | 
			
		||||
	vec3 diffuse;
 | 
			
		||||
	vec3 specular;
 | 
			
		||||
};
 | 
			
		||||
struct PointLight {
 | 
			
		||||
	vec3 position;
 | 
			
		||||
 | 
			
		||||
	float constant;
 | 
			
		||||
	float linear;
 | 
			
		||||
	float quadratic;
 | 
			
		||||
 | 
			
		||||
	vec3 ambient;
 | 
			
		||||
	vec3 diffuse;
 | 
			
		||||
	vec3 specular;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
out vec4 FragColor;
 | 
			
		||||
 | 
			
		||||
uniform vec3 viewPosition;
 | 
			
		||||
uniform Material material;
 | 
			
		||||
uniform Light light;
 | 
			
		||||
uniform DirectionalLight dirLight;
 | 
			
		||||
uniform PointLight pointLights[NR_POINT_LIGHTS];
 | 
			
		||||
uniform SpotLight spotLight;
 | 
			
		||||
 | 
			
		||||
in vec2 TexCoords;
 | 
			
		||||
in vec3 FragmentPos;
 | 
			
		||||
in vec3 FragPos;
 | 
			
		||||
in vec3 Normal;
 | 
			
		||||
 | 
			
		||||
void main()
 | 
			
		||||
vec3 CalculateDirectionalLight(DirectionalLight light, vec3 normal, vec3 viewDir)
 | 
			
		||||
{
 | 
			
		||||
	vec3 ambientLight = light.ambientIntensity * texture(material.diffuseMap, TexCoords).rgb;
 | 
			
		||||
	vec3 lightDir = normalize(-light.direction);
 | 
			
		||||
 | 
			
		||||
	vec3 normal = normalize(Normal);
 | 
			
		||||
	vec3 lightDir = normalize(light.position - FragmentPos);
 | 
			
		||||
	float diff = max(dot(normal, lightDir), 0);
 | 
			
		||||
 | 
			
		||||
	vec3 reflectionDir = reflect(-lightDir, normal);
 | 
			
		||||
	float spec = pow(max(dot(viewDir, reflectionDir), 0), material.shininess);
 | 
			
		||||
 | 
			
		||||
	vec3 ambient = light.ambient * vec3(texture(material.diffuseMap, TexCoords));
 | 
			
		||||
	vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuseMap, TexCoords));
 | 
			
		||||
	vec3 specular = light.specular * spec * vec3(texture(material.specularMap, TexCoords));
 | 
			
		||||
	
 | 
			
		||||
	return ambient + diffuse + specular;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
vec3 CalculatePointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
 | 
			
		||||
{
 | 
			
		||||
	vec3 lightDir = normalize(light.position - fragPos);
 | 
			
		||||
 | 
			
		||||
	float diff = max(dot(normal, lightDir), 0.0);
 | 
			
		||||
 | 
			
		||||
	vec3 reflectionDir = reflect(-lightDir, normal);
 | 
			
		||||
	float spec = pow(max(dot(viewDir, reflectionDir), 0.0), material.shininess);
 | 
			
		||||
 | 
			
		||||
	float distance = length(light.position - fragPos);
 | 
			
		||||
	float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
 | 
			
		||||
 | 
			
		||||
	vec3 ambientLight = light.ambient * texture(material.diffuseMap, TexCoords).rgb * attenuation;
 | 
			
		||||
	vec3 diffuseLight = light.diffuse * diff * texture(material.diffuseMap, TexCoords).rgb * attenuation;
 | 
			
		||||
	vec3 specularLight = light.specular * spec * texture(material.specularMap, TexCoords).rgb * attenuation;
 | 
			
		||||
 | 
			
		||||
	return ambientLight + diffuseLight + specularLight;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
vec3 CalculateSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
 | 
			
		||||
{
 | 
			
		||||
	vec3 lightDir = normalize(light.position - fragPos);
 | 
			
		||||
 | 
			
		||||
	float theta = dot(lightDir, normalize(-light.direction));
 | 
			
		||||
	float epsilon = light.cutOffAngle - light.outerCutOffAngle;
 | 
			
		||||
	float intensity = clamp((theta - light.outerCutOffAngle) / epsilon, 0.0, 1.0);
 | 
			
		||||
 | 
			
		||||
	float diff = max(dot(normal, lightDir), 0.0);
 | 
			
		||||
	vec3 diffuseLight = light.diffuseIntensity * diff * texture(material.diffuseMap, TexCoords).rgb;
 | 
			
		||||
 | 
			
		||||
	vec3 viewDir = normalize(viewPosition - FragmentPos);
 | 
			
		||||
	vec3 reflectDir = reflect(-lightDir, normal);
 | 
			
		||||
	float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 | 
			
		||||
	vec3 specularLight = light.specularIntensity * spec * texture(material.specularMap, TexCoords).rgb;
 | 
			
		||||
 | 
			
		||||
	float distance = length(light.position - FragmentPos);
 | 
			
		||||
	float distance = length(light.position - fragPos);
 | 
			
		||||
	float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
 | 
			
		||||
 | 
			
		||||
	ambientLight *= attenuation;
 | 
			
		||||
	diffuseLight *= attenuation * intensity;
 | 
			
		||||
	specularLight *= attenuation * intensity;
 | 
			
		||||
	vec3 ambientLight = light.ambientIntensity * texture(material.diffuseMap, TexCoords).rgb * attenuation;
 | 
			
		||||
	vec3 diffuseLight = light.diffuseIntensity * diff * texture(material.diffuseMap, TexCoords).rgb * attenuation * intensity;
 | 
			
		||||
	vec3 specularLight = light.specularIntensity * spec * texture(material.specularMap, TexCoords).rgb * attenuation * intensity;
 | 
			
		||||
 | 
			
		||||
	return ambientLight + diffuseLight + specularLight;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void main()
 | 
			
		||||
{
 | 
			
		||||
	vec3 normal = normalize(Normal);
 | 
			
		||||
	vec3 viewDir = normalize(viewPosition - FragPos);
 | 
			
		||||
 | 
			
		||||
	//vec3 result = CalculateDirectionalLight(dirLight, normal, viewDir);
 | 
			
		||||
	
 | 
			
		||||
	//for(int i = 0; i < NR_POINT_LIGHTS; i++)
 | 
			
		||||
	//	result += CalculatePointLight(pointLights[i], normal, FragPos, viewDir);
 | 
			
		||||
 | 
			
		||||
	vec3 result = CalculateSpotLight(spotLight, normal, FragPos, viewDir);
 | 
			
		||||
 | 
			
		||||
	vec3 result = ambientLight + diffuseLight + specularLight;
 | 
			
		||||
	FragColor = vec4(result, 1.0);
 | 
			
		||||
} 
 | 
			
		||||
@ -8,14 +8,14 @@ uniform mat4 viewMatrix;
 | 
			
		||||
uniform mat4 projectionMatrix;
 | 
			
		||||
 | 
			
		||||
out vec2 TexCoords;
 | 
			
		||||
out vec3 FragmentPos;
 | 
			
		||||
out vec3 FragPos;
 | 
			
		||||
out vec3 Normal;
 | 
			
		||||
 | 
			
		||||
void main()
 | 
			
		||||
{
 | 
			
		||||
	// NOTE: inverse() is very costly to calculate, so the normal matrix should be calculated on the CPU and sent over (just like we do with the model matrix)
 | 
			
		||||
	Normal = mat3(transpose(inverse(modelMatrix))) * normalVector;
 | 
			
		||||
	FragmentPos = vec3((modelMatrix) * vec4(aPos, 1.0));
 | 
			
		||||
	FragPos = vec3((modelMatrix) * vec4(aPos, 1.0));
 | 
			
		||||
	TexCoords = texCoords;
 | 
			
		||||
	// note that we read the multiplication from right to left
 | 
			
		||||
    gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(aPos, 1.0);
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user