first steps toward manipulating planet vertices

This commit is contained in:
2026-01-06 11:32:51 +01:00
parent 9242fe5b4c
commit c9e5d458fd
2 changed files with 121 additions and 1 deletions

View File

@@ -5,6 +5,7 @@ using Silk.NET.OpenGL;
namespace EngineSharp.Core.Rendering;
// https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction
// USE THIS FOR SENDING DATA TO SHADER FOR MANIPULATION: https://wikis.khronos.org/opengl/Buffer_Object#Creation
public class ComputeShader
{
private readonly string _computeShaderCode;

View File

@@ -1,5 +1,124 @@
#version 430 core
void main() {
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(std430, binding = 0) buffer verticesArray {
vec3 vertices[];
};
vec3 mod289(vec3 x)
{
return x - floor(x / 289.0) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x / 289.0) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289((x * 34.0 + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - r * 0.85373472095314;
}
float snoise(vec3 v)
{
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy;
vec3 x3 = x0 - 0.5;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec4 p =
permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
vec4 j = p - 49.0 * floor(p / 49.0); // mod(p,7*7)
vec4 x_ = floor(j / 7.0);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = (x_ * 2.0 + 0.5) / 7.0 - 1.0;
vec4 y = (y_ * 2.0 + 0.5) / 7.0 - 1.0;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//vec4 s0 = vec4(lessThan(b0, 0.0)) * 2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1, 0.0)) * 2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, 0.0);
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 g0 = vec3(a0.xy, h.x);
vec3 g1 = vec3(a0.zw, h.y);
vec3 g2 = vec3(a1.xy, h.z);
vec3 g3 = vec3(a1.zw, h.w);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(g0, g0), dot(g1, g1), dot(g2, g2), dot(g3, g3)));
g0 *= norm.x;
g1 *= norm.y;
g2 *= norm.z;
g3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
m = m * m;
m = m * m;
vec4 px = vec4(dot(x0, g0), dot(x1, g1), dot(x2, g2), dot(x3, g3));
return 42.0 * dot(m, px);
}
float simpleNoise(float3 pos) {
const float scale = 1;
const float multiplier = 1;
return simpleNoise(pos, scale, multiplier);
}
void main() {
uint idx = gl_GlobalInvocationID.x;
if (idx >= vertices.length()) // If out of range, return
{
return;
}
vec3 pos = vertices[idx];
float noise = simpleNoise(pos);
noise = smoothMax(noise, -oceanSettings.x, oceanSettings.y); // oceanDepth and smoothing
float finalHeight = 1 + noise * 0.01;
vertices[idx] = pos * finalHeight;
}