3 Commits

Author SHA1 Message Date
278a493595 benchmarking: tested int32 also on uni pc 2025-04-13 11:43:17 +02:00
af3b72f196 benchmarking: used int32 wherever possible; resulted in noticeable performance drop
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
2025-04-13 11:32:54 +02:00
4c60331288 evaluation: added introduction text and made plan for additional text
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
2025-04-12 16:22:14 +02:00
9 changed files with 34 additions and 22 deletions

View File

@ -1,5 +1,6 @@
module Interpreter module Interpreter
using CUDA using CUDA
using CUDA: i32
using StaticArrays using StaticArrays
using ..ExpressionProcessing using ..ExpressionProcessing
using ..Utils using ..Utils
@ -24,14 +25,14 @@ function interpret(expressions::Vector{Expr}, variables::Matrix{Float32}, parame
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression cudaExprs = Utils.create_cuda_array(exprs, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel # put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
cudaStepsize = CuArray([Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression cudaStepsize::CuArray{Int32} = CuArray([Utils.get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions # each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableCols, length(exprs)) cudaResults = CuArray{Float32}(undef, variableCols, length(exprs))
# Start kernel for each expression to ensure that no warp is working on different expressions # Start kernel for each expression to ensure that no warp is working on different expressions
@inbounds for i in eachindex(exprs) @inbounds for i in eachindex(exprs)
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i) kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, convert(Int32, i))
# config = launch_configuration(kernel.fun) # config = launch_configuration(kernel.fun)
threads = min(variableCols, 128) threads = min(variableCols, 128)
blocks = cld(variableCols, threads) blocks = cld(variableCols, threads)
@ -44,8 +45,8 @@ end
#TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking #TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking
const MAX_STACK_SIZE = 25 # The depth of the stack to store the values and intermediate results const MAX_STACK_SIZE = 25 # The depth of the stack to store the values and intermediate results
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int) function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int32}, exprIndex::Int32)
varSetIndex = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based) varSetIndex = (blockIdx().x - 1i32) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based)
@inbounds variableCols = length(variables) / stepsize[2] @inbounds variableCols = length(variables) / stepsize[2]
if varSetIndex > variableCols if varSetIndex > variableCols
@ -54,19 +55,19 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
# firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive # firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
# lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive # lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
@inbounds firstParamIndex = ((exprIndex - 1) * stepsize[1]) # Exclusive @inbounds firstParamIndex = ((exprIndex - 1i32) * stepsize[1]) # Exclusive
operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage
operationStackTop = 0 # stores index of the last defined/valid value operationStackTop = 0i32 # stores index of the last defined/valid value
@inbounds firstVariableIndex = ((varSetIndex-1) * stepsize[2]) # Exclusive @inbounds firstVariableIndex = ((varSetIndex - 1i32) * stepsize[2]) # Exclusive
@inbounds for expr in expressions @inbounds for expr in expressions
if expr.Type == EMPTY if expr.Type == EMPTY
break break
elseif expr.Type == INDEX elseif expr.Type == INDEX
val = expr.Value val = expr.Value
operationStackTop += 1 operationStackTop += 1i32
if val > 0 if val > 0
operationStack[operationStackTop] = variables[firstVariableIndex + val] operationStack[operationStackTop] = variables[firstVariableIndex + val]
@ -75,25 +76,25 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
operationStack[operationStackTop] = parameters[firstParamIndex + val] operationStack[operationStackTop] = parameters[firstParamIndex + val]
end end
elseif expr.Type == FLOAT32 elseif expr.Type == FLOAT32
operationStackTop += 1 operationStackTop += 1i32
operationStack[operationStackTop] = reinterpret(Float32, expr.Value) operationStack[operationStackTop] = reinterpret(Float32, expr.Value)
elseif expr.Type == OPERATOR elseif expr.Type == OPERATOR
type = reinterpret(Operator, expr.Value) type = reinterpret(Operator, expr.Value)
if type == ADD if type == ADD
operationStackTop -= 1 operationStackTop -= 1i32
operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1] operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1i32]
elseif type == SUBTRACT elseif type == SUBTRACT
operationStackTop -= 1 operationStackTop -= 1i32
operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1] operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1i32]
elseif type == MULTIPLY elseif type == MULTIPLY
operationStackTop -= 1 operationStackTop -= 1i32
operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1] operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1i32]
elseif type == DIVIDE elseif type == DIVIDE
operationStackTop -= 1 operationStackTop -= 1i32
operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1] operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1i32]
elseif type == POWER elseif type == POWER
operationStackTop -= 1 operationStackTop -= 1i32
operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1] operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1i32]
elseif type == ABS elseif type == ABS
operationStack[operationStackTop] = abs(operationStack[operationStackTop]) operationStack[operationStackTop] = abs(operationStack[operationStackTop])
elseif type == LOG elseif type == LOG
@ -104,14 +105,14 @@ function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, var
operationStack[operationStackTop] = sqrt(operationStack[operationStackTop]) operationStack[operationStackTop] = sqrt(operationStack[operationStackTop])
end end
else else
operationStack[operationStackTop] = NaN operationStack[operationStackTop] = NaN32
break break
end end
end end
# "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column) # "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column)
# "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row) # "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row)
resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive resultIndex = convert(Int, (exprIndex - 1i32) * variableCols + varSetIndex) # Inclusive
@inbounds results[resultIndex] = operationStack[operationStackTop] @inbounds results[resultIndex] = operationStack[operationStackTop]
return return

View File

@ -143,7 +143,7 @@ if compareWithCPU
println(gpuiVsGPUT_median) println(gpuiVsGPUT_median)
println(gpuiVsGPUT_std) println(gpuiVsGPUT_std)
BenchmarkTools.save("$BENCHMARKS_RESULTS_PATH/3-tuned-blocksize_I128_T96.json", results) BenchmarkTools.save("$BENCHMARKS_RESULTS_PATH/4-interpreter_using_int32.json", results)
else else
resultsOld = BenchmarkTools.load("$BENCHMARKS_RESULTS_PATH/2-using_inbounds.json")[1] resultsOld = BenchmarkTools.load("$BENCHMARKS_RESULTS_PATH/2-using_inbounds.json")[1]

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,9 +1,14 @@
\chapter{Evaluation} \chapter{Evaluation}
\label{cha:evaluation} \label{cha:evaluation}
The aim of this thesis is to determine whether at least one of the GPU evaluators is faster than the current CPU evaluator. This chapter describes the performance evaluation. First, the environment in which the performance tests are performed is explained. Then the individual results for the GPU interpreter and the transpiler are presented. In addition, this part also includes the performance tuning steps taken to achieve these results. Finally, the results of the GPU evaluators are compared to the CPU evaluator in order to answer the research questions of this thesis.
\section{Test environment} \section{Test environment}
Explain the hardware used, as well as the actual data (how many expressions, variables etc.) Explain the hardware used, as well as the actual data (how many expressions, variables etc.)
three scenarios -> few, normal and many variable sets;; expr repetitions to simulate parameter optimisation
Benchmarktools.jl -> 1000 samples per scenario
\section{Results} \section{Results}
talk about what we will see now (results only for interpreter, then transpiler and then compared with each other and a CPU interpreter) talk about what we will see now (results only for interpreter, then transpiler and then compared with each other and a CPU interpreter)
@ -16,6 +21,8 @@ Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large 1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large
2.) Using @inbounds -> noticeable improvement in 2 out of 3 2.) Using @inbounds -> noticeable improvement in 2 out of 3
3.) Tuned blocksize with NSight compute -> slight improvement
4.) used int32 everywhere to reduce register usage -> significant performance drop (probably because a lot more waiting time, or more type conversions happening on GPU? would need to look at PTX)
\subsection{Transpiler} \subsection{Transpiler}
Results only for Transpiler (also contains final kernel configuration and probably quick overview/recap of the implementation used and described in Implementation section Results only for Transpiler (also contains final kernel configuration and probably quick overview/recap of the implementation used and described in Implementation section
@ -26,6 +33,8 @@ Initial: CPU-Side single-threaded; up to 1024 threads per block; bounds-checking
1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large 1.) Blocksize reduced to a maximum of 256 -> moderate improvement in medium and large
2.) Using @inbounds -> small improvement only on CPU side code 2.) Using @inbounds -> small improvement only on CPU side code
3.) Tuned blocksize with NSight compute -> slight improvement
4.) Only changed things on interpreter side
\subsection{Comparison} \subsection{Comparison}
Comparison of Interpreter and Transpiler as well as Comparing the two with CPU interpreter Comparison of Interpreter and Transpiler as well as Comparing the two with CPU interpreter

Binary file not shown.