Files
master-thesis/package/src/Interpreter.jl
Daniel 14b2e23d9a
Some checks are pending
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Waiting to run
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Waiting to run
evaluation: found thath benchmark 2 can't be executed by any implementation due to RAM constraints
2025-05-24 16:58:35 +02:00

115 lines
5.8 KiB
Julia

module Interpreter
using CUDA
using StaticArrays
using ..ExpressionProcessing
using ..Utils
export interpret
"Interprets the given expressions with the values provided.
# Arguments
- cudaExprs::CuArray{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form and already sent to the GPU. The type information in the signature is missing, because creating a CuArray{ExpressionProcessing.PostfixType} results in a mor everbose type definition
- cudaVars::CuArray{Float32} : The variables to use. Each column is mapped to the variables x1..xn. The type information is missing due to the same reasons as cudaExprs
- parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
- kwparam ```frontendCache```: The cache that stores the (partial) results of the frontend
"
function interpret(cudaExprs, numExprs::Integer, exprsInnerLength::Integer,
cudaVars, variableColumns::Integer, variableRows::Integer, parameters::Vector{Vector{Float32}})::Matrix{Float32}
cudaParams = Utils.create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to each kernel
cudaStepsize = CuArray([exprsInnerLength, Utils.get_max_inner_length(parameters), variableRows]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
cudaResults = CuArray{Float32}(undef, variableColumns, numExprs)
# Start kernel for each expression to ensure that no warp is working on different expressions
numThreads = min(variableColumns, 128)
numBlocks = cld(variableColumns, numThreads)
Threads.@threads for i in 1:numExprs # multithreaded to speedup dispatching (seems to have improved performance)
@cuda threads=numThreads blocks=numBlocks fastmath=true interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
end
# Reduce GC pressure https://cuda.juliagpu.org/stable/usage/memory/#Avoiding-GC-pressure
CUDA.unsafe_free!(cudaParams)
CUDA.unsafe_free!(cudaStepsize)
return cudaResults
end
const MAX_STACK_SIZE = 10 # The depth of the stack to store the values and intermediate results
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
varSetIndex = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x (1-based)
@inbounds variableCols = length(variables) / stepsize[3] # number of variable sets
if varSetIndex > variableCols
return
end
@inbounds firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
@inbounds lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
@inbounds firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive
# TODO: Use @cuDynamicSharedMem/@cuStaticSharedMem for variables and or parameters
operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage
operationStackTop = 0 # stores index of the last defined/valid value
@inbounds firstVariableIndex = ((varSetIndex-1) * stepsize[3]) # Exclusive
@inbounds for i in firstExprIndex:lastExprIndex
token = expressions[i]
if token.Type == EMPTY
break
elseif token.Type == VARIABLE
operationStackTop += 1
operationStack[operationStackTop] = variables[firstVariableIndex + token.Value]
elseif token.Type == PARAMETER
operationStackTop += 1
operationStack[operationStackTop] = parameters[firstParamIndex + token.Value]
elseif token.Type == FLOAT32
operationStackTop += 1
operationStack[operationStackTop] = reinterpret(Float32, token.Value)
elseif token.Type == OPERATOR
opcode = reinterpret(Operator, token.Value)
if opcode == ADD
operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1]
elseif opcode == SUBTRACT
operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1]
elseif opcode == MULTIPLY
operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1]
elseif opcode == DIVIDE
operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1]
elseif opcode == POWER
operationStackTop -= 1
operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1]
elseif opcode == ABS
operationStack[operationStackTop] = abs(operationStack[operationStackTop])
elseif opcode == LOG
operationStack[operationStackTop] = log(operationStack[operationStackTop])
elseif opcode == EXP
operationStack[operationStackTop] = exp(operationStack[operationStackTop])
elseif opcode == SQRT
operationStack[operationStackTop] = sqrt(operationStack[operationStackTop])
elseif opcode == INV
operationStack[operationStackTop] = inv(operationStack[operationStackTop])
end
else
operationStack[operationStackTop] = NaN32
break
end
end
# "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column)
# "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row)
resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive
@inbounds results[resultIndex] = operationStack[operationStackTop]
return
end
end