Some checks failed
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.10) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, 1.6) (push) Has been cancelled
CI / Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} (x64, ubuntu-latest, pre) (push) Has been cancelled
173 lines
7.3 KiB
Julia
173 lines
7.3 KiB
Julia
module Interpreter
|
|
using CUDA
|
|
using StaticArrays
|
|
using ..ExpressionProcessing
|
|
|
|
export interpret
|
|
|
|
"Interprets the given expressions with the values provided.
|
|
# Arguments
|
|
- expressions::Vector{ExpressionProcessing.PostfixType} : The expressions to execute in postfix form
|
|
- variables::Matrix{Float32} : The variables to use. Each column is mapped to the variables x1..xn
|
|
- parameters::Vector{Vector{Float32}} : The parameters to use. Each Vector contains the values for the parameters p1..pn. The number of parameters can be different for every expression
|
|
"
|
|
function interpret(expressions::Vector{ExpressionProcessing.PostfixType}, variables::Matrix{Float32}, parameters::Vector{Vector{Float32}})::Matrix{Float32}
|
|
variableCols = size(variables, 2) # number of sets of variables to use for each expression
|
|
cudaVars = CuArray(variables)
|
|
cudaParams = create_cuda_array(parameters, NaN32) # column corresponds to data for one expression
|
|
cudaExprs = create_cuda_array(expressions, ExpressionElement(EMPTY, 0)) # column corresponds to data for one expression
|
|
# put into seperate cuArray, as this is static and would be inefficient to send seperatly to every kernel
|
|
cudaStepsize = CuArray([get_max_inner_length(expressions), get_max_inner_length(parameters), size(variables, 1)]) # max num of values per expression; max nam of parameters per expression; number of variables per expression
|
|
|
|
# each expression has nr. of variable sets (nr. of columns of the variables) results and there are n expressions
|
|
cudaResults = CuArray{Float32}(undef, variableCols, length(expressions))
|
|
|
|
# Start kernel for each expression to ensure that no warp is working on different expressions
|
|
for i in eachindex(expressions)
|
|
kernel = @cuda launch=false interpret_expression(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i)
|
|
config = launch_configuration(kernel.fun)
|
|
threads = min(variableCols, config.threads)
|
|
blocks = cld(variableCols, threads)
|
|
|
|
kernel(cudaExprs, cudaVars, cudaParams, cudaResults, cudaStepsize, i; threads, blocks)
|
|
end
|
|
|
|
return cudaResults
|
|
end
|
|
|
|
#TODO: Add @inbounds to all indexing after it is verified that all works https://cuda.juliagpu.org/stable/development/kernel/#Bounds-checking
|
|
const MAX_STACK_SIZE = 25 # The max number of values the expression can have. so Constant values, Variables and parameters
|
|
function interpret_expression(expressions::CuDeviceArray{ExpressionElement}, variables::CuDeviceArray{Float32}, parameters::CuDeviceArray{Float32}, results::CuDeviceArray{Float32}, stepsize::CuDeviceArray{Int}, exprIndex::Int)
|
|
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x # ctaid.x * ntid.x + tid.x
|
|
stride = gridDim().x * blockDim().x # nctaid.x * ntid.x
|
|
|
|
firstExprIndex = ((exprIndex - 1) * stepsize[1]) + 1 # Inclusive
|
|
lastExprIndex = firstExprIndex + stepsize[1] - 1 # Inclusive
|
|
firstParamIndex = ((exprIndex - 1) * stepsize[2]) # Exclusive
|
|
variableCols = length(variables) / stepsize[3]
|
|
|
|
operationStack = MVector{MAX_STACK_SIZE, Float32}(undef) # Try to get this to function with variable size too, to allow better memory usage
|
|
operationStackTop = 0 # stores index of the last defined/valid value
|
|
|
|
for varSetIndex in index:stride
|
|
firstVariableIndex = ((varSetIndex - 1) * stepsize[3]) # Exclusive
|
|
|
|
for i in firstExprIndex:lastExprIndex
|
|
if expressions[i].Type == EMPTY
|
|
break
|
|
elseif expressions[i].Type == INDEX
|
|
val = expressions[i].Value
|
|
operationStackTop += 1
|
|
|
|
if val > 0
|
|
operationStack[operationStackTop] = variables[firstVariableIndex + val]
|
|
else
|
|
val = -val
|
|
operationStack[operationStackTop] = parameters[firstParamIndex + val]
|
|
end
|
|
elseif expressions[i].Type == FLOAT32
|
|
operationStackTop += 1
|
|
operationStack[operationStackTop] = reinterpret(Float32, expressions[i].Value)
|
|
elseif expressions[i].Type == OPERATOR
|
|
type = reinterpret(Operator, expressions[i].Value)
|
|
if type == ADD
|
|
operationStackTop -= 1
|
|
operationStack[operationStackTop] = operationStack[operationStackTop] + operationStack[operationStackTop + 1]
|
|
elseif type == SUBTRACT
|
|
operationStackTop -= 1
|
|
operationStack[operationStackTop] = operationStack[operationStackTop] - operationStack[operationStackTop + 1]
|
|
elseif type == MULTIPLY
|
|
operationStackTop -= 1
|
|
operationStack[operationStackTop] = operationStack[operationStackTop] * operationStack[operationStackTop + 1]
|
|
elseif type == DIVIDE
|
|
operationStackTop -= 1
|
|
operationStack[operationStackTop] = operationStack[operationStackTop] / operationStack[operationStackTop + 1]
|
|
elseif type == POWER
|
|
operationStackTop -= 1
|
|
operationStack[operationStackTop] = operationStack[operationStackTop] ^ operationStack[operationStackTop + 1]
|
|
elseif type == ABS
|
|
operationStack[operationStackTop] = abs(operationStack[operationStackTop])
|
|
elseif type == LOG
|
|
operationStack[operationStackTop] = log(operationStack[operationStackTop])
|
|
elseif type == EXP
|
|
operationStack[operationStackTop] = exp(operationStack[operationStackTop])
|
|
elseif type == SQRT
|
|
operationStack[operationStackTop] = sqrt(operationStack[operationStackTop])
|
|
end
|
|
else
|
|
operationStack[operationStackTop] = NaN
|
|
break
|
|
end
|
|
end
|
|
# "(exprIndex - 1) * variableCols" -> calculates the column in which to insert the result (expression = column)
|
|
# "+ varSetIndex" -> to get the row inside the column at which to insert the result of the variable set (variable set = row)
|
|
resultIndex = convert(Int, (exprIndex - 1) * variableCols + varSetIndex) # Inclusive
|
|
results[resultIndex] = operationStack[operationStackTop]
|
|
end
|
|
|
|
return
|
|
end
|
|
|
|
|
|
"Retrieves the number of entries for the largest inner vector"
|
|
function get_max_inner_length(vec::Vector{Vector{T}})::Int where T
|
|
maxLength = 0
|
|
@inbounds for i in eachindex(vec)
|
|
if length(vec[i]) > maxLength
|
|
maxLength = length(vec[i])
|
|
end
|
|
end
|
|
|
|
return maxLength
|
|
end
|
|
|
|
"Returns a CuArray filed with the data provided. The inner vectors do not have to have the same length. All missing elements will be the value ```invalidElement```"
|
|
function create_cuda_array(data::Vector{Vector{T}}, invalidElement::T)::CuArray{T} where T
|
|
dataCols = get_max_inner_length(data)
|
|
dataRows = length(data)
|
|
dataMat = convert_to_matrix(data, invalidElement)
|
|
cudaArr = CuArray{T}(undef, dataCols, dataRows) # length(parameters) == number of expressions
|
|
copyto!(cudaArr, dataMat)
|
|
|
|
return cudaArr
|
|
end
|
|
|
|
"Converts a vector of vectors into a matrix. The inner vectors do not need to have the same length.
|
|
|
|
All entries that cannot be filled have ```invalidElement``` as their value
|
|
"
|
|
function convert_to_matrix(vec::Vector{Vector{T}}, invalidElement::T)::Matrix{T} where T
|
|
vecCols = get_max_inner_length(vec)
|
|
vecRows = length(vec)
|
|
vecMat = fill(invalidElement, vecCols, vecRows)
|
|
|
|
for i in eachindex(vec)
|
|
vecMat[:,i] = copyto!(vecMat[:,i], vec[i])
|
|
end
|
|
|
|
return vecMat
|
|
end
|
|
|
|
|
|
|
|
# Kernel
|
|
function InterpretExplicit!(op::Operator, x, y)
|
|
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
|
|
stride = gridDim().x * blockDim().x
|
|
|
|
if op == ADD
|
|
# @cuprintln("Performing Addition") # Will only be displayed when the GPU is synchronized
|
|
for i = index:stride:length(y)
|
|
@inbounds y[i] += x[i]
|
|
end
|
|
return
|
|
elseif op == SUBTRACT
|
|
# @cuprintln("Performing Subtraction") # Will only be displayed when the GPU is synchronized
|
|
for i = index:stride:length(y)
|
|
@inbounds y[i] -= x[i]
|
|
end
|
|
return
|
|
end
|
|
end
|
|
|
|
end |